Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2010_13_1_a4, author = {N. S. Dairbekov and V. A. Sharafutdinov}, title = {On conformal {Killing} symmetric tensor fields on {Riemannian} manifolds}, journal = {Matemati\v{c}eskie trudy}, pages = {85--145}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/} }
N. S. Dairbekov; V. A. Sharafutdinov. On conformal Killing symmetric tensor fields on Riemannian manifolds. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 85-145. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/
[1] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR
[2] Stepanov S. E., “Vektornoe prostranstvo konformno-killingovykh form na rimanovom mnogoobrazii”, Zap. nauch. seminarov POMI, 261, 1999, 240–265 | MR | Zbl
[3] Sharafutdinov V. A., O simmetrichnykh tenzornykh polyakh na rimanovom mnogoobrazii, Preprint No 539, Vychislit. tsentr SO AN SSSR, Novosibirsk, 1984 | MR
[4] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, VO Nauka, Novosibirsk, 1993 | MR | Zbl
[5] Yano K., Bokhner S., Krivizna i chisla Betti, Izd-vo inostr. lit., M., 1957
[6] Čap A., “Overdetermined systems, conformal differential geometry, and the BGG complex”, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 1–24 ; arXiv: math/0610225v1[math.DG] | MR | Zbl
[7] Case K. M., Zweifel P. F., Linear Transport Theory, Addison-Wesley Publishing Co., Reading, Mass., etc., 1967 | MR | Zbl
[8] Croke C. B., Sharafutdinov V. A., “Spectral rigidity of a negatively curved manifold”, Topology, 37:6 (1998), 1265–1273 | DOI | MR | Zbl
[9] Dairbekov N. S., Paternain G. P., “Rigidity properties of Anosov optical hypersurfaces”, Ergodic Theory Dynam. Systems, 28:3 (2008), 707–737 | MR | Zbl
[10] Dairbekov N. S., Paternain G. P., On the cohomological equation of magnetic flows, arXiv: 0807.4602v1[math.DS] | MR
[11] Eastwood M., “Higher symmetries of the Laplacian”, Ann. of Math. (2), 161:3 (2005), 1645–1665 | DOI | MR | Zbl
[12] Edgar S., Rani R., Barnes A., “Irreducible Killing tensors from conformal Killing vectors”, Symmetry in nonlinear mathematical physics, Part 1–3, Proc. of Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Natsional. Akad. Nauk Ukraini, Inst. Mat., Kiev, 2004, 708–714 | MR | Zbl
[13] Geroch R., “Multipole moments. I. Flat space”, J. Math. Physics, 11:6 (1970), 1955–1961 | DOI | MR | Zbl
[14] Jezierski J., Łukasik M., “Conformal Yano–Killing tensor for the Kerr metric and conserved quantities”, Classical Quantum Gravity, 23:9 (2006), 2895–2918 ; arXiv: gr-qc/0510058v2 | DOI | MR | Zbl
[15] Lionheart W. R. B., “Conformal uniqueness results in anisotropic electrical impedance imaging”, Inverse Problems, 13:1 (1997), 125–134 | DOI | MR | Zbl
[16] Mikhailov A., Notes on higher spin symmetries, arXiv: hep-th/0201019
[17] Sharafutdinov V. A., “Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds”, J. Geom. Anal., 17:1 (2007), 147–187 | MR | Zbl
[18] Taylor M. E., Partial Differential Equations, v. I, Springer, New York, 1997 | MR
[19] Vasiliev M. A., “Cubic interactions of Bosonic higher spin gauge fields in $\mathrm{AdS}_5$”, Nuclear Phys., 616:1–2 (2001), 106–162 ; arXiv: hep-th/0106200 | MR | Zbl
[20] Weir G. J., “Conformal Killing tensors in reducible spaces”, J. Math. Phys., 18:9 (1977), 1782–1787 | DOI | Zbl