On conformal Killing symmetric tensor fields on Riemannian manifolds
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 85-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector field on Riemannian manifold is called conformal Killing if it generates oneparameter group of conformal transformation. The class of conformal Killing symmetric tensor fields of an arbitrary rank is a natural generalization of the class of conformal Killing vector fields, and appears in different geometric and physical problems. In this paper, we prove that a trace-free conformal Killing tensor field is identically zero if it vanishes on some hypersurface. This statement is a basis of the theorem on decomposition of a symmetric tensor field on a compact manifold with boundary to a sum of three fields of special types. We also establish triviality of the space of trace-free conformal Killing tensor fields on some closed manifolds.
@article{MT_2010_13_1_a4,
     author = {N. S. Dairbekov and V. A. Sharafutdinov},
     title = {On conformal {Killing} symmetric tensor fields on {Riemannian} manifolds},
     journal = {Matemati\v{c}eskie trudy},
     pages = {85--145},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/}
}
TY  - JOUR
AU  - N. S. Dairbekov
AU  - V. A. Sharafutdinov
TI  - On conformal Killing symmetric tensor fields on Riemannian manifolds
JO  - Matematičeskie trudy
PY  - 2010
SP  - 85
EP  - 145
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/
LA  - ru
ID  - MT_2010_13_1_a4
ER  - 
%0 Journal Article
%A N. S. Dairbekov
%A V. A. Sharafutdinov
%T On conformal Killing symmetric tensor fields on Riemannian manifolds
%J Matematičeskie trudy
%D 2010
%P 85-145
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/
%G ru
%F MT_2010_13_1_a4
N. S. Dairbekov; V. A. Sharafutdinov. On conformal Killing symmetric tensor fields on Riemannian manifolds. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 85-145. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/

[1] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[2] Stepanov S. E., “Vektornoe prostranstvo konformno-killingovykh form na rimanovom mnogoobrazii”, Zap. nauch. seminarov POMI, 261, 1999, 240–265 | MR | Zbl

[3] Sharafutdinov V. A., O simmetrichnykh tenzornykh polyakh na rimanovom mnogoobrazii, Preprint No 539, Vychislit. tsentr SO AN SSSR, Novosibirsk, 1984 | MR

[4] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, VO Nauka, Novosibirsk, 1993 | MR | Zbl

[5] Yano K., Bokhner S., Krivizna i chisla Betti, Izd-vo inostr. lit., M., 1957

[6] Čap A., “Overdetermined systems, conformal differential geometry, and the BGG complex”, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 1–24 ; arXiv: math/0610225v1[math.DG] | MR | Zbl

[7] Case K. M., Zweifel P. F., Linear Transport Theory, Addison-Wesley Publishing Co., Reading, Mass., etc., 1967 | MR | Zbl

[8] Croke C. B., Sharafutdinov V. A., “Spectral rigidity of a negatively curved manifold”, Topology, 37:6 (1998), 1265–1273 | DOI | MR | Zbl

[9] Dairbekov N. S., Paternain G. P., “Rigidity properties of Anosov optical hypersurfaces”, Ergodic Theory Dynam. Systems, 28:3 (2008), 707–737 | MR | Zbl

[10] Dairbekov N. S., Paternain G. P., On the cohomological equation of magnetic flows, arXiv: 0807.4602v1[math.DS] | MR

[11] Eastwood M., “Higher symmetries of the Laplacian”, Ann. of Math. (2), 161:3 (2005), 1645–1665 | DOI | MR | Zbl

[12] Edgar S., Rani R., Barnes A., “Irreducible Killing tensors from conformal Killing vectors”, Symmetry in nonlinear mathematical physics, Part 1–3, Proc. of Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Natsional. Akad. Nauk Ukraini, Inst. Mat., Kiev, 2004, 708–714 | MR | Zbl

[13] Geroch R., “Multipole moments. I. Flat space”, J. Math. Physics, 11:6 (1970), 1955–1961 | DOI | MR | Zbl

[14] Jezierski J., Łukasik M., “Conformal Yano–Killing tensor for the Kerr metric and conserved quantities”, Classical Quantum Gravity, 23:9 (2006), 2895–2918 ; arXiv: gr-qc/0510058v2 | DOI | MR | Zbl

[15] Lionheart W. R. B., “Conformal uniqueness results in anisotropic electrical impedance imaging”, Inverse Problems, 13:1 (1997), 125–134 | DOI | MR | Zbl

[16] Mikhailov A., Notes on higher spin symmetries, arXiv: hep-th/0201019

[17] Sharafutdinov V. A., “Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds”, J. Geom. Anal., 17:1 (2007), 147–187 | MR | Zbl

[18] Taylor M. E., Partial Differential Equations, v. I, Springer, New York, 1997 | MR

[19] Vasiliev M. A., “Cubic interactions of Bosonic higher spin gauge fields in $\mathrm{AdS}_5$”, Nuclear Phys., 616:1–2 (2001), 106–162 ; arXiv: hep-th/0106200 | MR | Zbl

[20] Weir G. J., “Conformal Killing tensors in reducible spaces”, J. Math. Phys., 18:9 (1977), 1782–1787 | DOI | Zbl