On conformal Killing symmetric tensor fields on Riemannian manifolds
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 85-145

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector field on Riemannian manifold is called conformal Killing if it generates oneparameter group of conformal transformation. The class of conformal Killing symmetric tensor fields of an arbitrary rank is a natural generalization of the class of conformal Killing vector fields, and appears in different geometric and physical problems. In this paper, we prove that a trace-free conformal Killing tensor field is identically zero if it vanishes on some hypersurface. This statement is a basis of the theorem on decomposition of a symmetric tensor field on a compact manifold with boundary to a sum of three fields of special types. We also establish triviality of the space of trace-free conformal Killing tensor fields on some closed manifolds.
@article{MT_2010_13_1_a4,
     author = {N. S. Dairbekov and V. A. Sharafutdinov},
     title = {On conformal {Killing} symmetric tensor fields on {Riemannian} manifolds},
     journal = {Matemati\v{c}eskie trudy},
     pages = {85--145},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/}
}
TY  - JOUR
AU  - N. S. Dairbekov
AU  - V. A. Sharafutdinov
TI  - On conformal Killing symmetric tensor fields on Riemannian manifolds
JO  - Matematičeskie trudy
PY  - 2010
SP  - 85
EP  - 145
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/
LA  - ru
ID  - MT_2010_13_1_a4
ER  - 
%0 Journal Article
%A N. S. Dairbekov
%A V. A. Sharafutdinov
%T On conformal Killing symmetric tensor fields on Riemannian manifolds
%J Matematičeskie trudy
%D 2010
%P 85-145
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/
%G ru
%F MT_2010_13_1_a4
N. S. Dairbekov; V. A. Sharafutdinov. On conformal Killing symmetric tensor fields on Riemannian manifolds. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 85-145. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a4/