The Leibniz formula for the covariant derivative and some of its applications
Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 63-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formula for the higher covariant derivatives on the tensor product of vector bundles which is a wide generalization of the classical Leibniz formula. We construct an algorithm for the calculation of the part of the Taylor series of the double exponential map linear with respect to the second variable.
@article{MT_2010_13_1_a3,
     author = {A. V. Gavrilov},
     title = {The {Leibniz} formula for the covariant derivative and some of its applications},
     journal = {Matemati\v{c}eskie trudy},
     pages = {63--84},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a3/}
}
TY  - JOUR
AU  - A. V. Gavrilov
TI  - The Leibniz formula for the covariant derivative and some of its applications
JO  - Matematičeskie trudy
PY  - 2010
SP  - 63
EP  - 84
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_1_a3/
LA  - ru
ID  - MT_2010_13_1_a3
ER  - 
%0 Journal Article
%A A. V. Gavrilov
%T The Leibniz formula for the covariant derivative and some of its applications
%J Matematičeskie trudy
%D 2010
%P 63-84
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_1_a3/
%G ru
%F MT_2010_13_1_a3
A. V. Gavrilov. The Leibniz formula for the covariant derivative and some of its applications. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 63-84. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a3/

[1] Gavrilov A. V., “Algebraicheskie svoistva kovariantnogo differentsirovaniya i kompozitsiya eksponentsialnykh otobrazhenii”, Mat. trudy, 9:1 (2006), 3–20 | MR

[2] Gavrilov A. V., “Dvoinoe eksponentsialnoe otobrazhenie i kovariantnoe differentsirovanie”, Sib. mat. zhurn., 48:1 (2007), 68–74 | MR | Zbl

[3] Gavrilov A. V., “O vysshikh kovariantnykh proizvodnykh”, Sib. mat. zhurn., 49:6 (2008), 1250–1262 | MR

[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1–2, Nauka, M., 1981

[5] Sharafutdinov V. A., “Geometricheskoe ischislenie simvolov psevdodifferentsialnykh operatorov. I”, Mat. trudy, 7:2 (2004), 159–206 ; “II”, 8:1 (2005), 176–201 | MR | Zbl | MR | Zbl

[6] Gavrilov A. V., “Commutation relations on the covariant derivative”, J. Algebra, 323:2 (2010), 517–521 | DOI | MR | Zbl

[7] Montgomery S., Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl