Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2010_13_1_a3, author = {A. V. Gavrilov}, title = {The {Leibniz} formula for the covariant derivative and some of its applications}, journal = {Matemati\v{c}eskie trudy}, pages = {63--84}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2010_13_1_a3/} }
A. V. Gavrilov. The Leibniz formula for the covariant derivative and some of its applications. Matematičeskie trudy, Tome 13 (2010) no. 1, pp. 63-84. http://geodesic.mathdoc.fr/item/MT_2010_13_1_a3/
[1] Gavrilov A. V., “Algebraicheskie svoistva kovariantnogo differentsirovaniya i kompozitsiya eksponentsialnykh otobrazhenii”, Mat. trudy, 9:1 (2006), 3–20 | MR
[2] Gavrilov A. V., “Dvoinoe eksponentsialnoe otobrazhenie i kovariantnoe differentsirovanie”, Sib. mat. zhurn., 48:1 (2007), 68–74 | MR | Zbl
[3] Gavrilov A. V., “O vysshikh kovariantnykh proizvodnykh”, Sib. mat. zhurn., 49:6 (2008), 1250–1262 | MR
[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1–2, Nauka, M., 1981
[5] Sharafutdinov V. A., “Geometricheskoe ischislenie simvolov psevdodifferentsialnykh operatorov. I”, Mat. trudy, 7:2 (2004), 159–206 ; “II”, 8:1 (2005), 176–201 | MR | Zbl | MR | Zbl
[6] Gavrilov A. V., “Commutation relations on the covariant derivative”, J. Algebra, 323:2 (2010), 517–521 | DOI | MR | Zbl
[7] Montgomery S., Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl