On a~semilattice of numberings
Matematičeskie trudy, Tome 12 (2009) no. 2, pp. 170-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some properties of a $\mathfrak c$-universal semilattice $\mathfrak A$ with the cardinality of the continuum, i.e., of an upper semilattice of $m$-degrees. In particular, it is shown that the quotient semilattice of such a semilattice modulo any countable ideal will be also $\mathfrak c$-universal. In addition, there exists an isomorphism $\imath\colon\mathfrak A\hookrightarrow\mathfrak A$ onto some ideal of the semilattice $\mathfrak A$ such that $\mathfrak A/\imath(\mathfrak A)$ will be also $\mathfrak c$-universal. Furthermore, a property of the group of its automorphisms is obtained. To study properties of this semilattice, the technique and methods of admissible sets are used. More exactly, it is shown that the semilattice $m\Sigma$-degrees $\mathrm L^{\mathbb{HF}(S)}_{m\Sigma}$ on the hereditarily finite superstructure $\mathbb{HF}(S)$ over a countable set $S$ will be a $\mathfrak c$-universal semilattice with the cardinality of the continuum.
@article{MT_2009_12_2_a8,
     author = {V. G. Puzarenko},
     title = {On a~semilattice of numberings},
     journal = {Matemati\v{c}eskie trudy},
     pages = {170--209},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2009_12_2_a8/}
}
TY  - JOUR
AU  - V. G. Puzarenko
TI  - On a~semilattice of numberings
JO  - Matematičeskie trudy
PY  - 2009
SP  - 170
EP  - 209
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2009_12_2_a8/
LA  - ru
ID  - MT_2009_12_2_a8
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%T On a~semilattice of numberings
%J Matematičeskie trudy
%D 2009
%P 170-209
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2009_12_2_a8/
%G ru
%F MT_2009_12_2_a8
V. G. Puzarenko. On a~semilattice of numberings. Matematičeskie trudy, Tome 12 (2009) no. 2, pp. 170-209. http://geodesic.mathdoc.fr/item/MT_2009_12_2_a8/

[1] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977 | MR

[2] Ershov Yu. L., Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk; Ekonomika, M., 2000 | MR

[3] Puzarenko V. G., “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197 | MR | Zbl

[4] Puzarenko V. G., “Obobschennye numeratsii i opredelimost polya $\mathbb R$ v dopustimykh mnozhestvakh”, Vestnik NGU. Ser. mat., mekh., informat., 3:2 (2003), 107–117 | Zbl

[5] Puzarenko V. G., “Ob odnoi svodimosti na dopustimykh mnozhestvakh”, Sib. mat. zhurn., 50:2 (2009), 415–429 | MR

[6] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[7] Barwise J., Admissible Sets and Structures, Springer-Verlag, Berlin–New York, 1975 | MR | Zbl

[8] Soare R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer-Verlag, Berlin, etc., 1987 | MR