Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2009_12_1_a0, author = {A. V. Greshnov}, title = {On applications of the {Taylor} formula in some quasispaces}, journal = {Matemati\v{c}eskie trudy}, pages = {3--25}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2009_12_1_a0/} }
A. V. Greshnov. On applications of the Taylor formula in some quasispaces. Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/MT_2009_12_1_a0/
[1] Akivis M. A., “O kanonicheskikh razlozheniyakh uravnenii lokalnoi analiticheskoi kvazigruppy”, Dokl. AN SSSR, 188 (1969), 967–970 | MR | Zbl
[2] Vodopyanov S. K., “Differentsiruemost otobrazhenii v geometrii mnogoobrazii Karno”, Sib. mat. zhurn., 48:2 (2007), 251–271 | MR
[3] Greshnov A. V., “Metriki ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori i ikh kasatelnykh konusov”, Sib. mat. zhurn., 47:2 (2006), 259–292 | MR | Zbl
[4] Greshnov A. V., “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori ikh kasatelnymi konusami”, Sib. mat. zhurn., 48:2 (2007), 290–312 | MR | Zbl
[5] Dynkin E. B., “Normirovannye algebry Li i analiticheskie gruppy”, Uspekhi mat. nauk, 5:1(35) (1950), 135–186 | MR
[6] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[7] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984
[8] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Fizmatgiz, M., 1961 | MR
[9] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982 | MR
[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[11] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl
[12] Akivis M., Goldberg V. V., “Differential geometry of webs”, Handbook of Differential Geometry, V. 1, Birkhäuser, Basel, 2000, 1–152 | MR
[13] Belläiche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 1–78 | MR
[14] Bonfiglioli A., “Homogeneous Carnot groups related to sets of vector fields”, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7:1 (2004), 79–107 | MR | Zbl
[15] Djoković D. Ź., “An elementary proof of the Baker–Campbell–Hausdorff–Dynkin formula”, Math. Z., 143:3 (1975), 209–211 | DOI | MR | Zbl
[16] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[17] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl