On applications of the Taylor formula in some quasispaces
Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some metric spaces with quasimetric (quasispaces) comprising uniformly regular (equiregular) Carnot–Carathéodory quasispaces whose quasimetric is induced by $C^{\varUpsilon-1}$-smooth vector fields of formal degree not higher than $\varUpsilon$. For these spaces, some analogues of the Campbell–Hausdorff formula are derived, which allows us to prove a theorem on a nilpotent tangent cone, a theorem on isomorphism of various nilpotent tangent cones defined at a common point, and a local approximation theorem.
@article{MT_2009_12_1_a0,
     author = {A. V. Greshnov},
     title = {On applications of the {Taylor} formula in some quasispaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2009_12_1_a0/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - On applications of the Taylor formula in some quasispaces
JO  - Matematičeskie trudy
PY  - 2009
SP  - 3
EP  - 25
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2009_12_1_a0/
LA  - ru
ID  - MT_2009_12_1_a0
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T On applications of the Taylor formula in some quasispaces
%J Matematičeskie trudy
%D 2009
%P 3-25
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2009_12_1_a0/
%G ru
%F MT_2009_12_1_a0
A. V. Greshnov. On applications of the Taylor formula in some quasispaces. Matematičeskie trudy, Tome 12 (2009) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/MT_2009_12_1_a0/

[1] Akivis M. A., “O kanonicheskikh razlozheniyakh uravnenii lokalnoi analiticheskoi kvazigruppy”, Dokl. AN SSSR, 188 (1969), 967–970 | MR | Zbl

[2] Vodopyanov S. K., “Differentsiruemost otobrazhenii v geometrii mnogoobrazii Karno”, Sib. mat. zhurn., 48:2 (2007), 251–271 | MR

[3] Greshnov A. V., “Metriki ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori i ikh kasatelnykh konusov”, Sib. mat. zhurn., 47:2 (2006), 259–292 | MR | Zbl

[4] Greshnov A. V., “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori ikh kasatelnymi konusami”, Sib. mat. zhurn., 48:2 (2007), 290–312 | MR | Zbl

[5] Dynkin E. B., “Normirovannye algebry Li i analiticheskie gruppy”, Uspekhi mat. nauk, 5:1(35) (1950), 135–186 | MR

[6] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[7] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[8] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Fizmatgiz, M., 1961 | MR

[9] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982 | MR

[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[11] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[12] Akivis M., Goldberg V. V., “Differential geometry of webs”, Handbook of Differential Geometry, V. 1, Birkhäuser, Basel, 2000, 1–152 | MR

[13] Belläiche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 1–78 | MR

[14] Bonfiglioli A., “Homogeneous Carnot groups related to sets of vector fields”, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7:1 (2004), 79–107 | MR | Zbl

[15] Djoković D. Ź., “An elementary proof of the Baker–Campbell–Hausdorff–Dynkin formula”, Math. Z., 143:3 (1975), 209–211 | DOI | MR | Zbl

[16] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[17] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl