Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2008_11_2_a6, author = {Yu. Kh. Eshkabilov}, title = {Essential and discrete spectra of partially integral operators}, journal = {Matemati\v{c}eskie trudy}, pages = {187--203}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a6/} }
Yu. Kh. Eshkabilov. Essential and discrete spectra of partially integral operators. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 187-203. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a6/
[1] Aleksandrov V. M., Kovalenko E. V., Zadachi mekhaniki sploshnykh sred so smeshannymi granichnymi usloviyami, Nauka, M., 1986 | MR
[2] Kakichev V. A., Kovalenko N. V., “K teorii dvumernykh integralnykh uravnenii s chastnymi integralami”, Ukr. mat. zhurn., 25:3 (1973), 302–312 | Zbl
[3] Kalitvin A. S., “O spektre i sobstvennykh funktsiyakh ChIO tipa V. I. Romanovskogo”, Funktsionalnyi analiz, 22, Ulyanovsk. gos. ped. inst., Ulyanovsk, 1984, 35–45
[4] Kalitvin A. S., “O multispektre lineinykh operatorov”, Operatory i ikh prilozheniya. Priblizheniya funktsii. Uravneniya, Leningrad. gos. ped. inst., L., 1985, 91–99 | MR
[5] Kalitvin A. S., “O spektre nekotorykh klassov operatorov s chastnymi integralami”, Operatory i ikh prilozheniya. Priblizheniya funktsii. Uravneniya, Leningrad. gos. ped. inst., L., 1985, 27–35 | MR
[6] Kalitvin A. S., Issledovanie po ChIO, Dis. ... kand. fiz.-matem. nauk, Leningrad. ped. inst., L., 1986
[7] Kalitvin A. S., “O spektre lineinykh operatorov s chastnymi integralami i polozhitelnymi yadrami”, Operatory i ikh prilozheniya. Approksimatsiya funktsii. Spektralnaya teoriya, Leningrad. gos. ped. inst., L., 1988, 43–50 | MR | Zbl
[8] Kalitvin A. S., “O nekotorom klasse chastichno integralnykh uravnenii v aerodinamike”, Sostoyanie i perspektiva razvitiya nauki i tekhniki pod Lipetskom, 1994, 210–212
[9] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR
[10] Smirnov V. I., Kurs vysshei matematiki, T. 4, Ch. I, Nauka, M., 1974 | MR
[11] Fridrikhs K. O., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969
[12] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. I, Nauka, M., 1985 | MR
[13] Eshkabilov Yu. Kh., “O spektre tenzornoi summy kompaktnykh operatorov”, Uzbekskii mat. zhurn., 2005, no. 3, 104–112
[14] Eshkabilov Yu. Kh., “Vozmuschenie spektra operatora umnozheniya na funktsiyu s chastichno integralnym operatorom”, Vestnik nats. univ. Uzbekistana, 2006, no. 2, 17–21 | MR
[15] Eshkabilov Yu. Kh., “Ob odnom diskretnom “trekhchastichnom” operatore Shredingera v modeli Khabbarda”, Teoret. mat. fiz., 149:2 (2006), 228–243 | MR
[16] Aleksandrov V. M., Kovalenko E. V., “On some class of integral equations arising in mixed boundary value problems of continuum mechanics”, Soviet Phys. Dokl., 25:2 (1980), 354–356 | Zbl
[17] Appell J. M., Kalitvin A. S., Zabrejko P. P., Partial Integral Operators and Integro-Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, 230, Marcel Dekker, New York, 2000 | MR | Zbl
[18] Mogilner A. I., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR