Essential and discrete spectra of partially integral operators
Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 187-203

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega_1,\Omega_2\subset\mathbb R^\nu$ be compact sets. In the Hilbert space $L_2(\Omega_1\times\Omega_2)$, we study the spectral properties of selfadjoint partially integral operators $T_1$, $T_2$, and $T_1+T_2$, with \begin{align*} (T_1 f)(x,y)=\int_{\Omega_1}k_1(x,s,y)f(s,y)d\mu(s), \\ (T_2 f)(x,y)=\int_{\Omega_2}k_2(x,t,y)f(x,t)d\mu(t), \end{align*} whose kernels depend on three variables. We prove a theorem describing properties of the essential and discrete spectra of the partially integral operator $T_1+T_2$.
@article{MT_2008_11_2_a6,
     author = {Yu. Kh. Eshkabilov},
     title = {Essential and discrete spectra of partially integral operators},
     journal = {Matemati\v{c}eskie trudy},
     pages = {187--203},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a6/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
TI  - Essential and discrete spectra of partially integral operators
JO  - Matematičeskie trudy
PY  - 2008
SP  - 187
EP  - 203
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_2_a6/
LA  - ru
ID  - MT_2008_11_2_a6
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%T Essential and discrete spectra of partially integral operators
%J Matematičeskie trudy
%D 2008
%P 187-203
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_2_a6/
%G ru
%F MT_2008_11_2_a6
Yu. Kh. Eshkabilov. Essential and discrete spectra of partially integral operators. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 187-203. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a6/