Grothendieck topologies on Chu spaces
Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 159-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Grothendieck topologies on low semi-lattices, defined by one family, and the corresponding sheaf cohomology. This is a basis to define and study the left and right cohomologies and the left and right dimensions of the Chu spaces. The construction of Chu spaces allows to characterize a large class of quantities, for example, the dimension of a Noether space or the Krull dimension of a ring, the Lebesgue-type dimensions, as well as to compare them with the cohomology dimensions of the corresponding Chu spaces. We prove existence of spectral sequences of the morphisms of the Chu spaces.
@article{MT_2008_11_2_a5,
     author = {E. E. Skurikhin and A. G. Sukhonos},
     title = {Grothendieck topologies on {Chu} spaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {159--186},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a5/}
}
TY  - JOUR
AU  - E. E. Skurikhin
AU  - A. G. Sukhonos
TI  - Grothendieck topologies on Chu spaces
JO  - Matematičeskie trudy
PY  - 2008
SP  - 159
EP  - 186
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_2_a5/
LA  - ru
ID  - MT_2008_11_2_a5
ER  - 
%0 Journal Article
%A E. E. Skurikhin
%A A. G. Sukhonos
%T Grothendieck topologies on Chu spaces
%J Matematičeskie trudy
%D 2008
%P 159-186
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_2_a5/
%G ru
%F MT_2008_11_2_a5
E. E. Skurikhin; A. G. Sukhonos. Grothendieck topologies on Chu spaces. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 159-186. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a5/

[1] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, Uspekhi mat. nauk, 23:5 (1968), 3–49 | MR | Zbl

[2] Skurikhin E. E., “Normalnye puchki i kogomologicheskaya razmernost vpolne regulyarnykh prostranstv”, Dokl. AN SSSR, 265:3 (1982), 541–544 | MR | Zbl

[3] Skurikhin E. E., “Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv”, Tr. MIAN, 239, Nauka, M., 2002, 289–317 | MR | Zbl

[4] Skurikhin E. E., “Puchkovye kogomologii i razmernost ravnomernykh prostranstv”, Uspekhi mat. nauk, 58:4 (2003), 157–158 | MR | Zbl

[5] Skurikhin E. E., Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv, Dalnauka, Vladivostok, 2004

[6] Skurikhin E. E., “Ob odnom klasse kategornykh topologicheskikh prostranstv”, Uspekhi mat. nauk, 63:1 (2008), 167–168 | MR

[7] Skurikhin E. E., Sukhonos A. G., “Kogomologii i razmernost prostranstv Chu”, Dalnevost. mat. sb., 6:1–2 (2005), 14–22

[8] Artin M., Grothendieck Topologies, Harvard Math. Dept. Lecture Notes, Harvard University, Cambridge, MA, 1962 | Zbl

[9] Artin M., Grothendieck A., Verdier J. L. (eds.), Théorie de Topos et Cogomologie Étale de Shémas. Tome 1: Théorie des topos, Séminaire de Géometrie Algébriqe du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math., 269, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[10] Barr M., *-Autonomous Categories, Lecture Notes in Math., 752, Springer-Verlag, Berlin, 1979 | MR | Zbl

[11] Gupta V., Chu Spaces: A Model of Concurrency, PhD Thesis, Stanford Univ., Stanford, 1994

[12] Gupta V., Pratt V. R., “Gates accept concurrent behavior”, Proc. of the 34th Ann. IEEE Symp. on Foundations of Comp. Sci., 1993, 62–71

[13] Pratt V. R., “Chu Spaces”, School on Category Theory and Applications (Coimbra, 1999), Textos Mat. Sér. B, 21, Univ. Coimbra, Coimbra, 1999, 39–100 | MR | Zbl

[14] Pratt V. R., “Chu spaces as a semantic bridge between linear logic and mathematics”, Linear Logic (Tokyo, 1996), Theoret. Comput. Sci., 294:3 (2003), 439–471 | DOI | MR | Zbl

[15] Zang G.-Q., “Chu Spaces, Concept Lattices, and Domain”, Electronic Notes on Theoret. Comput. Sci., 83 (2004)