Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2008_11_2_a2, author = {V. P. Golubyatnikov}, title = {On convexity of a~planar domain with a~pair of concave tomography projections}, journal = {Matemati\v{c}eskie trudy}, pages = {107--114}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a2/} }
V. P. Golubyatnikov. On convexity of a~planar domain with a~pair of concave tomography projections. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 107-114. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a2/
[1] Golubyatnikov V. P., “O tomografii mnogogrannikov”, Voprosy korrektnosti obratnykh zadach matematicheskoi fiziki, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1982, 75–76
[2] Golubyatnikov V. P., “Ob odnoznachnoi vosstanovimosti vypuklykh i obozrimykh kompaktov po ikh proektsiyam”, Mat. sb., 182:5 (1991), 611–621 | MR | Zbl
[3] Golubyatnikov V. P., “Voprosy ustoichivosti v nekotorykh obratnykh zadachakh rekonstruktsii vypuklykh kompaktov po ikh proektsiyam”, Sib. mat. zhurn., 33:3 (1992), 50–57 | MR | Zbl
[4] Briskin M., Elichai Y., Yomdin Y., “How can singularity theory help in image processing”, Pattern Formation in Biology, Vision and Dynamics, eds. M. Gromov, A. Carbone, World Scientific, Singapore–London, 2000, 392–423 | Zbl
[5] Gardner R. J., Geometric Tomography, 2nd edition, Cambridge Univ. Press, New York, 2006 | MR | Zbl
[6] Gardner R. J., McMullen P., “On Hammer's X-ray problem”, J. London Math. Soc., 21 (1980), 171–175 | DOI | MR | Zbl
[7] Kuba A., Volčič A., “Characterization of measurable plane set which are reconstructable from their two projections”, Inverse Problems, 4 (1988), 513–527 | DOI | MR | Zbl
[8] Lorentz G. G., “A problem of plane measure”, Amer. J. Math., 71 (1949), 417–426 | DOI | MR | Zbl
[9] Riesz F., “Sur une inégalité intégrale”, J. London Math. Soc., 5 (1930), 162–168 | DOI | Zbl
[10] Yomdin Y., “Semialgebraic complexity of functions”, J. Complexity, 21 (2005), 70–96 | DOI | MR