On convexity of a~planar domain with a~pair of concave tomography projections
Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 107-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe simple sufficient conditions on tomography-type measurements of a planar set which imply convexity of this set. The cases of partial convexity and higher-dimensional sets are considered as well.
@article{MT_2008_11_2_a2,
     author = {V. P. Golubyatnikov},
     title = {On convexity of a~planar domain with a~pair of concave tomography projections},
     journal = {Matemati\v{c}eskie trudy},
     pages = {107--114},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_2_a2/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
TI  - On convexity of a~planar domain with a~pair of concave tomography projections
JO  - Matematičeskie trudy
PY  - 2008
SP  - 107
EP  - 114
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_2_a2/
LA  - ru
ID  - MT_2008_11_2_a2
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%T On convexity of a~planar domain with a~pair of concave tomography projections
%J Matematičeskie trudy
%D 2008
%P 107-114
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_2_a2/
%G ru
%F MT_2008_11_2_a2
V. P. Golubyatnikov. On convexity of a~planar domain with a~pair of concave tomography projections. Matematičeskie trudy, Tome 11 (2008) no. 2, pp. 107-114. http://geodesic.mathdoc.fr/item/MT_2008_11_2_a2/

[1] Golubyatnikov V. P., “O tomografii mnogogrannikov”, Voprosy korrektnosti obratnykh zadach matematicheskoi fiziki, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1982, 75–76

[2] Golubyatnikov V. P., “Ob odnoznachnoi vosstanovimosti vypuklykh i obozrimykh kompaktov po ikh proektsiyam”, Mat. sb., 182:5 (1991), 611–621 | MR | Zbl

[3] Golubyatnikov V. P., “Voprosy ustoichivosti v nekotorykh obratnykh zadachakh rekonstruktsii vypuklykh kompaktov po ikh proektsiyam”, Sib. mat. zhurn., 33:3 (1992), 50–57 | MR | Zbl

[4] Briskin M., Elichai Y., Yomdin Y., “How can singularity theory help in image processing”, Pattern Formation in Biology, Vision and Dynamics, eds. M. Gromov, A. Carbone, World Scientific, Singapore–London, 2000, 392–423 | Zbl

[5] Gardner R. J., Geometric Tomography, 2nd edition, Cambridge Univ. Press, New York, 2006 | MR | Zbl

[6] Gardner R. J., McMullen P., “On Hammer's X-ray problem”, J. London Math. Soc., 21 (1980), 171–175 | DOI | MR | Zbl

[7] Kuba A., Volčič A., “Characterization of measurable plane set which are reconstructable from their two projections”, Inverse Problems, 4 (1988), 513–527 | DOI | MR | Zbl

[8] Lorentz G. G., “A problem of plane measure”, Amer. J. Math., 71 (1949), 417–426 | DOI | MR | Zbl

[9] Riesz F., “Sur une inégalité intégrale”, J. London Math. Soc., 5 (1930), 162–168 | DOI | Zbl

[10] Yomdin Y., “Semialgebraic complexity of functions”, J. Complexity, 21 (2005), 70–96 | DOI | MR