Partially integral operators with bounded kernels
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 192-207
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega=[a,b]^\nu$ and let $T$ be a partially integral operator defined in $ L_2(\Omega^2)$ as follows:
$$
(Tf)(x,y)=\int_\Omega q(x,s,y)f(s,y)\,d\mu(s).
$$
In the article, we study the solvability of the partially integral Fredholm equations $f-\varkappa Tf=g$, where $g\in L_2(\Omega^2)$ is a given function and $\varkappa\in\mathbb C$. The notion of determinant (which is a measurable function on $\Omega$) is introduced for the operator $E-\varkappa T$, with $E$ is the identity operator in $L_2(\Omega^2)$. Some theorems on the spectrum of a bounded operator $T$ are proven.
@article{MT_2008_11_1_a9,
author = {Yu. Kh. Eshkabilov},
title = {Partially integral operators with bounded kernels},
journal = {Matemati\v{c}eskie trudy},
pages = {192--207},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/}
}
Yu. Kh. Eshkabilov. Partially integral operators with bounded kernels. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 192-207. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/