Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2008_11_1_a9, author = {Yu. Kh. Eshkabilov}, title = {Partially integral operators with bounded kernels}, journal = {Matemati\v{c}eskie trudy}, pages = {192--207}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/} }
Yu. Kh. Eshkabilov. Partially integral operators with bounded kernels. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 192-207. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/
[1] Kakichev V. A., Kovalenko N. V., “K teorii dvumernykh integralnykh uravnenii s chastnymi integralami”, Ukr. mat. zhurn., 25:3 (1973), 302–312 | Zbl
[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR
[3] Mikhlin S. G., “O skhodimosti ryadov Fredgolma”, Dokl. AN SSSR, 42:9 (1944), 373–376 | Zbl
[4] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959 | MR
[5] Morozov V. A., “Primenenie metoda regulyarizatsii k resheniyu odnoi nekorrektnoi zadachi”, Vestnik MGU, 1965, no. 4, 13–21 | Zbl
[6] Okolelov O. P., “Analogi nekotorykh teorem Fredgolma dlya integralnykh uravnenii s kratnym i chastnymi integralami”, Tr. Irkutskogo un-ta, 26 (1968), 74–89 | MR
[7] Smirnov V. I., Kurs vysshei matematiki, T. 4. Chast I, Nauka, M., 1974 | MR
[8] Fridrikhs K. O., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969
[9] Eshkabilov Yu. Kh., “Ob odnom diskretnom “trekhchastichnom” operatore Shredingera v modeli Khabbarda”, Teoret. mat. fiz., 149:2 (2006), 228–243 | MR
[10] Appell J., Frolova E. V., Kalitvin A. S., Zabrejko P. P., “Partial integral operators on $C([a,b]\times[c,d])$”, Integral Equations Operator Theory, 27:2 (1997), 125–140 | DOI | MR | Zbl
[11] Carleman T., “Zur Theorie der linearen Integralgleichungen”, Math. Z., 9:3–4 (1921), 196–217 (German) | DOI | MR | Zbl
[12] Kalitvin A. S., Zabrejko P. P., “On the theory of partial integral operators”, J. Integral Equations Appl., 3:3 (1991), 351–382 | DOI | MR | Zbl
[13] Kudaybergenov K. K., “$\nabla$-Fredholm operators in Banach–Kantorovich spaces”, Methods Funct. Anal. Topology, 12:3 (2006), 234–242 | MR | Zbl
[14] Mattis D., “The few-body problem in a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR
[15] Mogilner A. I., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR