Partially integral operators with bounded kernels
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 192-207

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega=[a,b]^\nu$ and let $T$ be a partially integral operator defined in $ L_2(\Omega^2)$ as follows: $$ (Tf)(x,y)=\int_\Omega q(x,s,y)f(s,y)\,d\mu(s). $$ In the article, we study the solvability of the partially integral Fredholm equations $f-\varkappa Tf=g$, where $g\in L_2(\Omega^2)$ is a given function and $\varkappa\in\mathbb C$. The notion of determinant (which is a measurable function on $\Omega$) is introduced for the operator $E-\varkappa T$, with $E$ is the identity operator in $L_2(\Omega^2)$. Some theorems on the spectrum of a bounded operator $T$ are proven.
@article{MT_2008_11_1_a9,
     author = {Yu. Kh. Eshkabilov},
     title = {Partially integral operators with bounded kernels},
     journal = {Matemati\v{c}eskie trudy},
     pages = {192--207},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
TI  - Partially integral operators with bounded kernels
JO  - Matematičeskie trudy
PY  - 2008
SP  - 192
EP  - 207
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/
LA  - ru
ID  - MT_2008_11_1_a9
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%T Partially integral operators with bounded kernels
%J Matematičeskie trudy
%D 2008
%P 192-207
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/
%G ru
%F MT_2008_11_1_a9
Yu. Kh. Eshkabilov. Partially integral operators with bounded kernels. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 192-207. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/