Partially integral operators with bounded kernels
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 192-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega=[a,b]^\nu$ and let $T$ be a partially integral operator defined in $ L_2(\Omega^2)$ as follows: $$ (Tf)(x,y)=\int_\Omega q(x,s,y)f(s,y)\,d\mu(s). $$ In the article, we study the solvability of the partially integral Fredholm equations $f-\varkappa Tf=g$, where $g\in L_2(\Omega^2)$ is a given function and $\varkappa\in\mathbb C$. The notion of determinant (which is a measurable function on $\Omega$) is introduced for the operator $E-\varkappa T$, with $E$ is the identity operator in $L_2(\Omega^2)$. Some theorems on the spectrum of a bounded operator $T$ are proven.
@article{MT_2008_11_1_a9,
     author = {Yu. Kh. Eshkabilov},
     title = {Partially integral operators with bounded kernels},
     journal = {Matemati\v{c}eskie trudy},
     pages = {192--207},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
TI  - Partially integral operators with bounded kernels
JO  - Matematičeskie trudy
PY  - 2008
SP  - 192
EP  - 207
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/
LA  - ru
ID  - MT_2008_11_1_a9
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%T Partially integral operators with bounded kernels
%J Matematičeskie trudy
%D 2008
%P 192-207
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/
%G ru
%F MT_2008_11_1_a9
Yu. Kh. Eshkabilov. Partially integral operators with bounded kernels. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 192-207. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a9/

[1] Kakichev V. A., Kovalenko N. V., “K teorii dvumernykh integralnykh uravnenii s chastnymi integralami”, Ukr. mat. zhurn., 25:3 (1973), 302–312 | Zbl

[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[3] Mikhlin S. G., “O skhodimosti ryadov Fredgolma”, Dokl. AN SSSR, 42:9 (1944), 373–376 | Zbl

[4] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959 | MR

[5] Morozov V. A., “Primenenie metoda regulyarizatsii k resheniyu odnoi nekorrektnoi zadachi”, Vestnik MGU, 1965, no. 4, 13–21 | Zbl

[6] Okolelov O. P., “Analogi nekotorykh teorem Fredgolma dlya integralnykh uravnenii s kratnym i chastnymi integralami”, Tr. Irkutskogo un-ta, 26 (1968), 74–89 | MR

[7] Smirnov V. I., Kurs vysshei matematiki, T. 4. Chast I, Nauka, M., 1974 | MR

[8] Fridrikhs K. O., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[9] Eshkabilov Yu. Kh., “Ob odnom diskretnom “trekhchastichnom” operatore Shredingera v modeli Khabbarda”, Teoret. mat. fiz., 149:2 (2006), 228–243 | MR

[10] Appell J., Frolova E. V., Kalitvin A. S., Zabrejko P. P., “Partial integral operators on $C([a,b]\times[c,d])$”, Integral Equations Operator Theory, 27:2 (1997), 125–140 | DOI | MR | Zbl

[11] Carleman T., “Zur Theorie der linearen Integralgleichungen”, Math. Z., 9:3–4 (1921), 196–217 (German) | DOI | MR | Zbl

[12] Kalitvin A. S., Zabrejko P. P., “On the theory of partial integral operators”, J. Integral Equations Appl., 3:3 (1991), 351–382 | DOI | MR | Zbl

[13] Kudaybergenov K. K., “$\nabla$-Fredholm operators in Banach–Kantorovich spaces”, Methods Funct. Anal. Topology, 12:3 (2006), 234–242 | MR | Zbl

[14] Mattis D., “The few-body problem in a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[15] Mogilner A. I., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR