Convex regular-faced polyhedra indecomposable by any plane to regular-faced polyhedra
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 132-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

A convex polyhedron with regular faces or with faces decomposable by two regular polygons is called indecomposable if any section plane dissects this polyhedron by such two parts that at least one of the faces of these two parts is an irregular polygon. In this article, the precise values of coordinates of vertices of such indecomposable convex polyhedra are calculated in the case when some of the faces consist of two regular polygons. The algebraic models of other indecomposable polyhedra have constructed. So, for any indecomposable convex polyhedron, we give here the explicit values of coordinates of such vertices and describe isometries of the space such that the collection of orbits of these vertices under action of the group generated by these isometries coincides with the set of all vertices of this polyhedron. This description provides a short proof of existence of each of these indecomposable polyhedra, and some other applications as well.
@article{MT_2008_11_1_a6,
     author = {A. V. Timofeenko},
     title = {Convex regular-faced polyhedra indecomposable by any plane to regular-faced polyhedra},
     journal = {Matemati\v{c}eskie trudy},
     pages = {132--152},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a6/}
}
TY  - JOUR
AU  - A. V. Timofeenko
TI  - Convex regular-faced polyhedra indecomposable by any plane to regular-faced polyhedra
JO  - Matematičeskie trudy
PY  - 2008
SP  - 132
EP  - 152
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a6/
LA  - ru
ID  - MT_2008_11_1_a6
ER  - 
%0 Journal Article
%A A. V. Timofeenko
%T Convex regular-faced polyhedra indecomposable by any plane to regular-faced polyhedra
%J Matematičeskie trudy
%D 2008
%P 132-152
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a6/
%G ru
%F MT_2008_11_1_a6
A. V. Timofeenko. Convex regular-faced polyhedra indecomposable by any plane to regular-faced polyhedra. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 132-152. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a6/

[1] Brënsted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988 | MR

[2] Gurin A. M., “K istorii izucheniya vypuklykh mnogogrannikov s pravilnymi granyami i granyami, sostavlennymi iz pravilnykh mnogougolnikov”, Tr. mezhdunar. shkoly-seminara “Geometriya i analiz”, posvyasch. pamyati N. V. Efimova, TsVVR, Rostov-na-Donu, 2006, 31–33

[3] Delone B. N., Matematicheskii entsiklopedicheskii slovar, ME, M., 1988

[4] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauchn. seminarov LOMI/ Mat. in-t im. V. A. Steklova. Leningr. otd-nie, 2, Nauka, M., L., 1967, 5–221 | MR | Zbl

[5] Ivanov B. A., “Mnogogranniki s granyami, slozhennymi iz pravilnykh mnogougolnikov”, Ukr. geometr. sb., 10 (1971), 20–34 | MR | Zbl

[6] Pryakhin Yu. A., “O vypuklykh mnogogrannikakh s pravilnymi granyami”, Ukr. geometr. sb., 14 (1973), 83–88

[7] Timofeenko A. V., “O vypuklykh pravilnogrannykh telakh, nekotorye grani kotorykh lezhat v odnoi ploskosti”, Tr. mezhdunar. shkoly-seminara “Geometriya i analiz”, posvyasch. pamyati N. V. Efimova, TsVVR, Rostov-na-Donu, 2006, 92–93

[8] Timofeenko A. V., “Nesostavnye mnogogranniki, otlichnye ot tel Platona i Arkhimeda”, Fundamentalnaya i prikladnaya matematika, 14:2 (2008), 179–205

[9] Timofeenko A. V., Golovanova O. V., Timofeev I. V., “Krasota formuly voploschaetsya v krasotu prostranstvennoi formy. I”, Vestnik Krasnoyarskoi gos. arkhitekturno-stroit. akademii, Sb. nauch. tr. Vserossiiskoi nauch.-prakt. konf. Vyp. 8, KrasGASA, Krasnoyarsk, 2005, 287–293

[10] Timofeenko A. V., Golovanova O. V., Timofeev I. V., “Krasota formuly voploschaetsya v krasotu prostranstvennoi formy. II”, Vestnik Krasnoyarskoi gos. arkhitekturno-stroit. akademii, Sb. nauch. tr. Vserossiiskoi nauch.-prakt. konf. Vyp. 8, KrasGASA, Krasnoyarsk, 2005, 293–297

[11] Cromwell P. R., Polyhedra, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[12] Johnson N. W., “Convex polyhedra with regular faces”, Canad. J. Math., 18:1 (1966), 169–200 | MR | Zbl

[13] Weisstein E. W., Johnson Solid, MathWorld-A Wolfram Web Resource mathworld.wolfram.com/JohnsonSolid.html