Superlarge deviations for sums of random variables with arithmetical super-exponential distributions
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 81-112
Voir la notice de l'article provenant de la source Math-Net.Ru
Local limit theorems are obtained for superlarge deviations of sums $S(n)=\xi(1)+\dots+\xi(n)$ of independent identically distributed random variables having an arithmetical distribution with the right-hand tail decreasing faster that that of a Gaussian law. The distribution of $\xi$ has the form $\mathbb P(\xi=k)=e^{-k^\beta L(k)}$, where $\beta>2$, $k\in\mathbb Z$ ($\mathbb Z$ is the set of all integers), and $L(t)$ is a slowly varying function as $t\to\infty$ which satisfies some regularity conditions. These theorems describing an asymptotic behavior of the probabilities $\mathbb P\bigl(S(n)=k\bigr)$ as $k/n\to\infty$, complement the results on superlarge deviations in [1, 2].
@article{MT_2008_11_1_a4,
author = {A. A. Mogulskiǐ and Ch. Pagma},
title = {Superlarge deviations for sums of random variables with arithmetical super-exponential distributions},
journal = {Matemati\v{c}eskie trudy},
pages = {81--112},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a4/}
}
TY - JOUR AU - A. A. Mogulskiǐ AU - Ch. Pagma TI - Superlarge deviations for sums of random variables with arithmetical super-exponential distributions JO - Matematičeskie trudy PY - 2008 SP - 81 EP - 112 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a4/ LA - ru ID - MT_2008_11_1_a4 ER -
A. A. Mogulskiǐ; Ch. Pagma. Superlarge deviations for sums of random variables with arithmetical super-exponential distributions. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 81-112. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a4/