Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 25-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The limit behavior is studied for the distributions of normalized $U$- and $V$-statistics of an arbitrary order with canonical (degenerate) kernels, based on samples of increasing sizes from a stationary sequence of observations satisfying $\varphi$-or $\alpha$-mixing. The corresponding limit distributions are represented as infinite multilinear forms of a centered Gaussian sequence with a known covariance matrix.
@article{MT_2008_11_1_a1,
     author = {I. S. Borisov and N. V. Volodko},
     title = {Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {25--48},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - N. V. Volodko
TI  - Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
JO  - Matematičeskie trudy
PY  - 2008
SP  - 25
EP  - 48
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/
LA  - ru
ID  - MT_2008_11_1_a1
ER  - 
%0 Journal Article
%A I. S. Borisov
%A N. V. Volodko
%T Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
%J Matematičeskie trudy
%D 2008
%P 25-48
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/
%G ru
%F MT_2008_11_1_a1
I. S. Borisov; N. V. Volodko. Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 25-48. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[2] Borisov I. S., Bystrov A. A., “Predelnye teoremy dlya kanonicheskikh statistik Mizesa, postroennykh po zavisimym nablyudeniyam”, Sib. mat. zhurn., 47:6 (2006), 1205–1217 | MR | Zbl

[3] Gikhman I. I., Skorokhod A. V., Yadrenko M. I., Teoriya veroyatnostei i matematicheskaya statistika, Vischa shkola, Kiev, 1979

[4] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl

[6] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Naukova Dumka, Kiev, 1989 | MR | Zbl

[7] Tikhomirov A. N., “O tochnosti normalnoi approksimatsii veroyatnosti popadaniya v shar summ slabo zavisimykh gilbertovoznachnykh sluchainykh velichin. I”, Teoriya veroyatnostei i ee primeneniya, 36:4 (1991), 699–710 | MR | Zbl

[8] Utev S. A., “Summy sluchainykh velichin s $\varphi$-peremeshivaniem”, Asimptoticheskii analiz raspredelenii sluchainykh protsessov, Tr. IM SO AN SSSR, 13, Nauka, Novosibirsk, 1989, 78–100 | MR

[9] Doukhan P., “Mixing. Properties and Examples”, Lecture Notes in Statistics, 85, Springer–Verlag, New York, 1994 | MR | Zbl

[10] Eagleson G. K., “Orthogonal expansions and $U$-statistics”, Austral. J. Statist., 21:3 (1979), 221–237 | DOI | MR | Zbl

[11] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl

[12] Von Mises R., “On the asymptotic distribution of differentiable statistical functions”, Ann. Math. Statist., 18 (1947), 309–348 | DOI | MR | Zbl

[13] Rubin H., Vitale R., “Asymptotic distribution of symmetric statistics”, Ann. Statist., 8:1 (1980), 165–170 | DOI | MR | Zbl