Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 25-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The limit behavior is studied for the distributions of normalized $U$- and $V$-statistics of an arbitrary order with canonical (degenerate) kernels, based on samples of increasing sizes from a stationary sequence of observations satisfying $\varphi$-or $\alpha$-mixing. The corresponding limit distributions are represented as infinite multilinear forms of a centered Gaussian sequence with a known covariance matrix.
@article{MT_2008_11_1_a1,
author = {I. S. Borisov and N. V. Volodko},
title = {Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations},
journal = {Matemati\v{c}eskie trudy},
pages = {25--48},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/}
}
TY - JOUR AU - I. S. Borisov AU - N. V. Volodko TI - Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations JO - Matematičeskie trudy PY - 2008 SP - 25 EP - 48 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/ LA - ru ID - MT_2008_11_1_a1 ER -
%0 Journal Article %A I. S. Borisov %A N. V. Volodko %T Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations %J Matematičeskie trudy %D 2008 %P 25-48 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/ %G ru %F MT_2008_11_1_a1
I. S. Borisov; N. V. Volodko. Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 25-48. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/