Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 25-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The limit behavior is studied for the distributions of normalized $U$- and $V$-statistics of an arbitrary order with canonical (degenerate) kernels, based on samples of increasing sizes from a stationary sequence of observations satisfying $\varphi$-or $\alpha$-mixing. The corresponding limit distributions are represented as infinite multilinear forms of a centered Gaussian sequence with a known covariance matrix.
@article{MT_2008_11_1_a1,
     author = {I. S. Borisov and N. V. Volodko},
     title = {Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {25--48},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - N. V. Volodko
TI  - Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
JO  - Matematičeskie trudy
PY  - 2008
SP  - 25
EP  - 48
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/
LA  - ru
ID  - MT_2008_11_1_a1
ER  - 
%0 Journal Article
%A I. S. Borisov
%A N. V. Volodko
%T Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations
%J Matematičeskie trudy
%D 2008
%P 25-48
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/
%G ru
%F MT_2008_11_1_a1
I. S. Borisov; N. V. Volodko. Orthogonal series and limit theorems for canonical $U$- and $V$-statistics of stationary connected observations. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 25-48. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a1/