Countably categorical and autostable Boolean algebras with distinguished ideals
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study countable Boolean algebras with finitely many distinguished ideals (countable $I$-algebras) whose elementary theory is countably categorical, and autostable $I$-algebras which form their subclass. We propose a new characterization for the former class that allows to answer a series of questions about the structure of countably categorical and autostable $I$-algebras.
@article{MT_2008_11_1_a0,
     author = {P. E. Alaev},
     title = {Countably categorical and autostable {Boolean} algebras with distinguished ideals},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Countably categorical and autostable Boolean algebras with distinguished ideals
JO  - Matematičeskie trudy
PY  - 2008
SP  - 3
EP  - 24
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/
LA  - ru
ID  - MT_2008_11_1_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Countably categorical and autostable Boolean algebras with distinguished ideals
%J Matematičeskie trudy
%D 2008
%P 3-24
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/
%G ru
%F MT_2008_11_1_a0
P. E. Alaev. Countably categorical and autostable Boolean algebras with distinguished ideals. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/

[1] Alaev P. E., “Avtoustoichivye $I$-algebry”, Algebra i logika, 43:5 (2004), 511–550 | MR | Zbl

[2] Goncharov S. S., Schetnye bulevy algebry i razreshimost, Nauchnaya kniga, Novosibirsk, 1996 | MR | Zbl

[3] Goncharov S. S., Ershov Yu. L., Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999

[4] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[5] Palchunov D. E., Schetno-kategorichnye bulevy algebry s vydelennymi idealami, Preprint No 12, IM SO AN SSSR, Novosibirsk, 1986

[6] Palchunov D. E., “Konechno-aksiomatiziruemye bulevy algebry s vydelennymi idealami”, Algebra i logika, 26:4 (1987), 435–455 | MR

[7] Palchunov D. E., “Pryamye slagaemye bulevykh algebr s vydelennymi idealami”, Algebra i logika, 31:5 (1992), 499–537 | MR

[8] Monk J. D., Bonnet R. (eds.), Handbook of Boolean Algebras, Vol. 3, North-Holland Publishing Co., Amsterdam, 1989, 717–1367 | MR | Zbl

[9] Macintyre A., Rosenstein J. G., “$\aleph_0$-Categoricity for rings without nilpotent elements and for Boolean structures”, J. Algebra, 43:1 (1976), 129–154 | DOI | MR | Zbl

[10] Pal'chunov D. E., “Countably-categorical Boolean algebras with distinguished ideals”, Studia Logica, 46:2 (1987), 121–135 | DOI | MR

[11] Touraille A., “Théories d'algèbres de Boole munies d'idéaux distingués. I: Théories élémentaires”, J. Symbolic Logic, 52:4 (1987), 1027–1043 | DOI | MR | Zbl

[12] Touraille A., “Théories d'algèbres de Boole munies d'idéaux distingués. II”, J. Symbolic Logic, 55:3 (1990), 1192–1212 | DOI | MR | Zbl