Countably categorical and autostable Boolean algebras with distinguished ideals
Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 3-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We study countable Boolean algebras with finitely many distinguished ideals (countable $I$-algebras) whose elementary theory is countably categorical, and autostable $I$-algebras which form their subclass. We propose a new characterization for the former class that allows to answer a series of questions about the structure of countably categorical and autostable $I$-algebras.
@article{MT_2008_11_1_a0,
     author = {P. E. Alaev},
     title = {Countably categorical and autostable {Boolean} algebras with distinguished ideals},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Countably categorical and autostable Boolean algebras with distinguished ideals
JO  - Matematičeskie trudy
PY  - 2008
SP  - 3
EP  - 24
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/
LA  - ru
ID  - MT_2008_11_1_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Countably categorical and autostable Boolean algebras with distinguished ideals
%J Matematičeskie trudy
%D 2008
%P 3-24
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/
%G ru
%F MT_2008_11_1_a0
P. E. Alaev. Countably categorical and autostable Boolean algebras with distinguished ideals. Matematičeskie trudy, Tome 11 (2008) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/MT_2008_11_1_a0/