On One Representation of Analytic Functions by Harmonic Functions
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 142-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u(x)$ be a function analytic in some neighborhood $\mathcal D$ about the origin, $\mathcal D\subset\Bbb R^n$. We study the representation of this function in the form of a series $u(x)=u_0(x)+|x|^2u_1(x)+|x|^4u_2(x)+\dotsb$, where $u_k(x)$ are functions harmonic in $\mathcal D$. This representation is a generalization of the well-known Almansi formula.
@article{MT_2007_10_2_a5,
     author = {V. V. Karachik},
     title = {On {One} {Representation} of {Analytic} {Functions} by {Harmonic} {Functions}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {142--162},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - On One Representation of Analytic Functions by Harmonic Functions
JO  - Matematičeskie trudy
PY  - 2007
SP  - 142
EP  - 162
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/
LA  - ru
ID  - MT_2007_10_2_a5
ER  - 
%0 Journal Article
%A V. V. Karachik
%T On One Representation of Analytic Functions by Harmonic Functions
%J Matematičeskie trudy
%D 2007
%P 142-162
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/
%G ru
%F MT_2007_10_2_a5
V. V. Karachik. On One Representation of Analytic Functions by Harmonic Functions. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 142-162. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/