On One Representation of Analytic Functions by Harmonic Functions
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 142-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u(x)$ be a function analytic in some neighborhood $\mathcal D$ about the origin, $\mathcal D\subset\Bbb R^n$. We study the representation of this function in the form of a series $u(x)=u_0(x)+|x|^2u_1(x)+|x|^4u_2(x)+\dotsb$, where $u_k(x)$ are functions harmonic in $\mathcal D$. This representation is a generalization of the well-known Almansi formula.
@article{MT_2007_10_2_a5,
     author = {V. V. Karachik},
     title = {On {One} {Representation} of {Analytic} {Functions} by {Harmonic} {Functions}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {142--162},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - On One Representation of Analytic Functions by Harmonic Functions
JO  - Matematičeskie trudy
PY  - 2007
SP  - 142
EP  - 162
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/
LA  - ru
ID  - MT_2007_10_2_a5
ER  - 
%0 Journal Article
%A V. V. Karachik
%T On One Representation of Analytic Functions by Harmonic Functions
%J Matematičeskie trudy
%D 2007
%P 142-162
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/
%G ru
%F MT_2007_10_2_a5
V. V. Karachik. On One Representation of Analytic Functions by Harmonic Functions. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 142-162. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a5/

[1] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | MR

[2] Bitsadze A. V., “O nekotorykh svoistvakh poligarmonicheskikh funktsii”, Differents. uravneniya, 24:5 (1988), 825–831 | MR | Zbl

[3] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, OGIZ, M.–L., 1948 | MR

[4] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[5] Almansi E., “Sull'integrazione dell'equazione differenziale $\Delta^{2n}u=0$”, Ann. Mat. Pura Appl., 2:3 (1899), 1–51 | Zbl

[6] Aronszajn N., Creese M. T., and Lipkin L. J., Polyharmonic Functions, Oxford Univ. Press, New York, 1983 | MR | Zbl

[7] Ciorǎnescu N., “Sur la représentation des fonctions analytiques de plusieurs variables réelles”, Bull. Soc. Math. France, 65 (1937), 41–52 | MR | Zbl

[8] Karachik V. V., “Harmonic polynomials and the divisibility problem”, Proc. Amer. Math. Soc., 125:11 (1997), 3257–3258 | DOI | MR | Zbl

[9] Karachik V. V., “On one set of orthogonal harmonic polynomials”, Proc. Amer. Math. Soc., 126:12 (1998), 3513–3519 | DOI | MR | Zbl

[10] Karachik V. V., “Polynomial solutions to the systems of partial differential equations with constant coefficients”, Yokohama Math. J., 47:2 (2000), 121–142 | MR | Zbl

[11] Karachik V. V., “Normalized system of functions with respect to the Laplace operator and its applications”, J. Math. Anal. Appl., 287:2 (2003), 577–592 | DOI | MR | Zbl

[12] Karachik V. V., “On one representation of analytic functions”, Voprosy Vychisl. i Prikl. Mat. (Tashkent), 2003, no. 112, 139–148 | MR | Zbl

[13] Karachik V. V., “On some special polynomials”, Proc. Amer. Math. Soc., 132 (2004), 1049–1058 | DOI | MR | Zbl

[14] Malonek H. R. and Ren G. B., “Almansi-type theorems in Clifford analysis”, Math. Methods Appl. Sci., 25 (2002), 1541–1552 | DOI | MR | Zbl

[15] Nicolescu N., “Probléme de l'analyticité par rapport á un opérateur linéaire”, Studia Math., 16 (1958), 353–363 | MR | Zbl

[16] Ren G. B., “Almansi decomposition for Dunkl operators”, Sci. China Ser. A, 48 (2005), 333–342 | DOI | MR | Zbl

[17] Ren G. B. and Kähler U., “Almansi decompositions for polyharmonic, polyheat, and polywave functions”, Studia Math., 172:1 (2006), 91–100 | DOI | MR | Zbl