The Sectional Curvature Remains Positive When Taking Quotients by Certain Nonfree Actions
Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 62-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study some cases in which the sectional curvature remains positive under the taking of quotients by certain nonfree isometric actions of Lie groups. We consider the actions of the groups $S^1$ and $S^3$ for which the quotient space can be endowed with a smooth structure by means of the fibrations $S^3/S^1\simeq S^2$ and $S^7/S^3\simeq S^4$. We prove that the quotient space possesses a metric of positive sectional curvature provided that the original metric has positive sectional curvature on all 2-planes orthogonal to the orbits of the action.
@article{MT_2007_10_2_a2,
     author = {S. V. Dyatlov},
     title = {The {Sectional} {Curvature} {Remains} {Positive} {When} {Taking} {Quotients} by {Certain} {Nonfree} {Actions}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {62--91},
     year = {2007},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a2/}
}
TY  - JOUR
AU  - S. V. Dyatlov
TI  - The Sectional Curvature Remains Positive When Taking Quotients by Certain Nonfree Actions
JO  - Matematičeskie trudy
PY  - 2007
SP  - 62
EP  - 91
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_2_a2/
LA  - ru
ID  - MT_2007_10_2_a2
ER  - 
%0 Journal Article
%A S. V. Dyatlov
%T The Sectional Curvature Remains Positive When Taking Quotients by Certain Nonfree Actions
%J Matematičeskie trudy
%D 2007
%P 62-91
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MT_2007_10_2_a2/
%G ru
%F MT_2007_10_2_a2
S. V. Dyatlov. The Sectional Curvature Remains Positive When Taking Quotients by Certain Nonfree Actions. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 62-91. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a2/

[1] Bazaikin Ya. V., “Ob odnom semeistve 13-mernykh zamknutykh rimanovykh mnogoobrazii polozhitelnoi krivizny”, Sib. mat. zhurn., 37:6 (1996), 1219–1237 | MR | Zbl

[2] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[3] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR

[4] Gao L. Z., “The construction of negatively Ricci curved manifolds”, Math. Ann., 271:2 (1985), 185–208 | DOI | MR | Zbl

[5] O'Neill B., “The fundamental equations of a submersion”, Michigan Math. J., 13 (1966), 459–469 | DOI | MR

[6] Vilms J., “Totally geodesic maps”, J. Differential Geom., 4:4 (1970), 73–79 | MR | Zbl

[7] Wallach N., “Compact homogeneous Riemannian manifolds with strictly positive curvature”, Ann. of Math., 96 (1972), 277–295 | DOI | MR | Zbl