Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2007_10_2_a2, author = {S. V. Dyatlov}, title = {The {Sectional} {Curvature} {Remains} {Positive} {When} {Taking} {Quotients} by {Certain} {Nonfree} {Actions}}, journal = {Matemati\v{c}eskie trudy}, pages = {62--91}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2007_10_2_a2/} }
S. V. Dyatlov. The Sectional Curvature Remains Positive When Taking Quotients by Certain Nonfree Actions. Matematičeskie trudy, Tome 10 (2007) no. 2, pp. 62-91. http://geodesic.mathdoc.fr/item/MT_2007_10_2_a2/
[1] Bazaikin Ya. V., “Ob odnom semeistve 13-mernykh zamknutykh rimanovykh mnogoobrazii polozhitelnoi krivizny”, Sib. mat. zhurn., 37:6 (1996), 1219–1237 | MR | Zbl
[2] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl
[3] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR
[4] Gao L. Z., “The construction of negatively Ricci curved manifolds”, Math. Ann., 271:2 (1985), 185–208 | DOI | MR | Zbl
[5] O'Neill B., “The fundamental equations of a submersion”, Michigan Math. J., 13 (1966), 459–469 | DOI | MR
[6] Vilms J., “Totally geodesic maps”, J. Differential Geom., 4:4 (1970), 73–79 | MR | Zbl
[7] Wallach N., “Compact homogeneous Riemannian manifolds with strictly positive curvature”, Ann. of Math., 96 (1972), 277–295 | DOI | MR | Zbl