Small Extensions of Models of $o$-Minimal Theories and Absolute Homogeneity
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 154-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some results on existence of small extensions of models of weakly $o$-minimal atomic theories. In particular, we find a sharp upper estimate for the Hanf number of such a theory for omitting an arbitrary family of pure types. We also find a sharp upper estimate for cardinalities of weakly $o$-minimal absolutely homogeneous models and a sufficient condition for absolute homogeneity.
@article{MT_2007_10_1_a6,
     author = {K. Zh. Kudaibergenov},
     title = {Small {Extensions} of {Models} of $o${-Minimal} {Theories} and {Absolute} {Homogeneity}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {154--163},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a6/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - Small Extensions of Models of $o$-Minimal Theories and Absolute Homogeneity
JO  - Matematičeskie trudy
PY  - 2007
SP  - 154
EP  - 163
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a6/
LA  - ru
ID  - MT_2007_10_1_a6
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T Small Extensions of Models of $o$-Minimal Theories and Absolute Homogeneity
%J Matematičeskie trudy
%D 2007
%P 154-163
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a6/
%G ru
%F MT_2007_10_1_a6
K. Zh. Kudaibergenov. Small Extensions of Models of $o$-Minimal Theories and Absolute Homogeneity. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 154-163. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a6/

[1] Kudaibergenov K. Zh., “Ob odnoi gipoteze Shelakha”, Algebra i logika, 26:2 (1987), 191–203 | MR

[2] Kudaibergenov K. Zh., “Elementarnye rasshireniya, opuskanie tipov i odnorodnye modeli”, Algebra i logika, 27:2 (1988), 148–171 | MR

[3] Kudaibergenov K. Zh., “O rasshireniyakh odnorodnykh modelei”, Algebra i logika, 28:1 (1989), 61–74 | MR

[4] Baldwin J. T. and Lachlan A. H., “On strongly minimal sets”, J. Symbolic Logic, 36:1 (1971), 79–96 | DOI | MR | Zbl

[5] Keisler H. J. and Morley M. D., “On the number of homogeneous models of a given power”, Israel J. Math., 5:2 (1967), 73–78 | DOI | MR | Zbl

[6] Knight J., Pillay A., and Steinhorn Ch., “Definable sets in ordered structures. II”, Trans. Amer. Math. Soc., 295 (1986), 593–605 | DOI | MR | Zbl

[7] Kudaibergenov K. Zh., “Homogeneous models of stable theories”, Siberian Adv. Math., 3:3 (1993), 56–88 | MR

[8] Kunen K., paper Combinatorics \, Handbook of Mathematical Logic, North-Holland, 1977

[9] Macpherson H. D., Marker D., and Steinhorn Ch., “Weakly $o$-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352 (2000), 5435–5483 | DOI | MR | Zbl

[10] Marker D., “Omitting types in $o$-minimal theories”, J. Symb. Logic, 51:1 (1986), 63–74 | DOI | MR | Zbl

[11] Pillay A. and Steinhorn Ch., “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 295 (1986), 565–592 | DOI | MR | Zbl

[12] Shelah S., “Finite diagrams stable in power”, Ann. Math. Logic, 2 (1970), 69–118 | DOI | MR | Zbl

[13] Shelah S., “Stability, the f.c.p. and superstability”, Ann. Math. Logic, 3 (1971), 271–362 | DOI | MR | Zbl