Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2007_10_1_a6, author = {K. Zh. Kudaibergenov}, title = {Small {Extensions} of {Models} of $o${-Minimal} {Theories} and {Absolute} {Homogeneity}}, journal = {Matemati\v{c}eskie trudy}, pages = {154--163}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a6/} }
K. Zh. Kudaibergenov. Small Extensions of Models of $o$-Minimal Theories and Absolute Homogeneity. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 154-163. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a6/
[1] Kudaibergenov K. Zh., “Ob odnoi gipoteze Shelakha”, Algebra i logika, 26:2 (1987), 191–203 | MR
[2] Kudaibergenov K. Zh., “Elementarnye rasshireniya, opuskanie tipov i odnorodnye modeli”, Algebra i logika, 27:2 (1988), 148–171 | MR
[3] Kudaibergenov K. Zh., “O rasshireniyakh odnorodnykh modelei”, Algebra i logika, 28:1 (1989), 61–74 | MR
[4] Baldwin J. T. and Lachlan A. H., “On strongly minimal sets”, J. Symbolic Logic, 36:1 (1971), 79–96 | DOI | MR | Zbl
[5] Keisler H. J. and Morley M. D., “On the number of homogeneous models of a given power”, Israel J. Math., 5:2 (1967), 73–78 | DOI | MR | Zbl
[6] Knight J., Pillay A., and Steinhorn Ch., “Definable sets in ordered structures. II”, Trans. Amer. Math. Soc., 295 (1986), 593–605 | DOI | MR | Zbl
[7] Kudaibergenov K. Zh., “Homogeneous models of stable theories”, Siberian Adv. Math., 3:3 (1993), 56–88 | MR
[8] Kunen K., paper Combinatorics \, Handbook of Mathematical Logic, North-Holland, 1977
[9] Macpherson H. D., Marker D., and Steinhorn Ch., “Weakly $o$-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352 (2000), 5435–5483 | DOI | MR | Zbl
[10] Marker D., “Omitting types in $o$-minimal theories”, J. Symb. Logic, 51:1 (1986), 63–74 | DOI | MR | Zbl
[11] Pillay A. and Steinhorn Ch., “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 295 (1986), 565–592 | DOI | MR | Zbl
[12] Shelah S., “Finite diagrams stable in power”, Ann. Math. Logic, 2 (1970), 69–118 | DOI | MR | Zbl
[13] Shelah S., “Stability, the f.c.p. and superstability”, Ann. Math. Logic, 3 (1971), 271–362 | DOI | MR | Zbl