Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 97-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of continued fractions, generalized golden sections, and generalized Fibonacci and Lucas numbers are proved on the ground of the properties of subsemigroups of the group of invertible integer matrices. Some properties of special recurrent sequences are studied. A new proof of the Pisot-Vijayaraghavan theorem is given. Some connections between continued fractions and Pisot numbers are considered. Some unsolved problems are stated.
@article{MT_2007_10_1_a3,
     author = {V. N. Berestovskii and Yu. G. Nikonorov},
     title = {Continued {Fractions,} the {Group} $\mathrm{GL}(2,\mathbb Z)$, and {Pisot} {Numbers}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {97--131},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/}
}
TY  - JOUR
AU  - V. N. Berestovskii
AU  - Yu. G. Nikonorov
TI  - Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers
JO  - Matematičeskie trudy
PY  - 2007
SP  - 97
EP  - 131
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/
LA  - ru
ID  - MT_2007_10_1_a3
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%A Yu. G. Nikonorov
%T Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers
%J Matematičeskie trudy
%D 2007
%P 97-131
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/
%G ru
%F MT_2007_10_1_a3
V. N. Berestovskii; Yu. G. Nikonorov. Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 97-131. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/