Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 97-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of continued fractions, generalized golden sections, and generalized Fibonacci and Lucas numbers are proved on the ground of the properties of subsemigroups of the group of invertible integer matrices. Some properties of special recurrent sequences are studied. A new proof of the Pisot-Vijayaraghavan theorem is given. Some connections between continued fractions and Pisot numbers are considered. Some unsolved problems are stated.
@article{MT_2007_10_1_a3,
     author = {V. N. Berestovskii and Yu. G. Nikonorov},
     title = {Continued {Fractions,} the {Group} $\mathrm{GL}(2,\mathbb Z)$, and {Pisot} {Numbers}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {97--131},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/}
}
TY  - JOUR
AU  - V. N. Berestovskii
AU  - Yu. G. Nikonorov
TI  - Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers
JO  - Matematičeskie trudy
PY  - 2007
SP  - 97
EP  - 131
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/
LA  - ru
ID  - MT_2007_10_1_a3
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%A Yu. G. Nikonorov
%T Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers
%J Matematičeskie trudy
%D 2007
%P 97-131
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/
%G ru
%F MT_2007_10_1_a3
V. N. Berestovskii; Yu. G. Nikonorov. Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 97-131. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a3/

[1] Arnold V. I., Tsepnye drobi, Biblioteka «Matematicheskoe prosveschenie», 14, MTsNMO, M., 2001

[2] Arnold V. I., “Mnogomernye tsepnye drobi”, Regulyarnaya i khaoticheskaya dinamika, 3:3 (1998), 10–17 | MR | Zbl

[3] Arnold I. V., Teoriya chisel, Uchpedgiz, M., 1939

[4] Bryuno A. D., Parusnikov V. A., “Sravnenie razlichnykh obobschenii tsepnykh drobei”, Mat. zametki, 61:3 (1997), 339–350 | MR

[5] Bugaenko V. O., Uravneniya Pellya, Biblioteka «Matematicheskoe prosveschenie», 13, MTsNMO, M., 2001

[6] Bukhshtab A. A., Teoriya chisel, Uchpedgiz, M., 1960

[7] Van der Varden B. L., Algebra, Nauka, M., 1979 | MR

[8] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1972 | MR

[9] Voloshinov A. V., Matematika i iskusstvo, Prosveschenie, M., 1992

[10] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[11] Gashkov S. B., Chubarikov V. N., Arifmetika. Algoritmy. Slozhnost vychislenii, Vysshaya shkola, M., 2000

[12] Grekhem R. L., Knut D. E., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998

[13] Danilov V. L., Ivanova A. N., Isakova E. K., Lyusternik L. A., Salekhov G. S., Khovanskii A. N., Tslaf L. Ya., Yanpolskii A. R., Matematicheskii analiz. Funktsii, predely, ryady, tsepnye drobi, Spravochnaya matematicheskaya biblioteka, Fizmatgiz, M., 1961

[14] Idelson N. I., “Istoriya kalendarya”, Etyudy po istorii nebesnoi mekhaniki, Nauka, M., 1975, 308–411 | MR

[15] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Nauka, M., 1961

[16] Klein F., Elementarnaya matematika s tochki zreniya vysshei. T. 1: Arifmetika. Algebra. Analiz, Nauka, M., 1987 | MR

[17] Kokseter G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i sootnosheniya diskretnykh grupp, Nauka, M., 1980

[18] Leng S., Algebra, Mir, M., 1968

[19] Markov A. A., Lektsii o nepreryvnykh drobyakh, Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M.; L., 1948 | MR

[20] Pidou D., Geometriya i iskusstvo, Mir, M., 1979

[21] Polia G., Sege G., Zadachi i teoremy iz analiza, Chast 2, Nauka, M., 1978

[22] Pustylnikov L. D., “Obobschennye tsepnye drobi i ergodicheskaya teoriya”, Uspekhi mat. nauk, 58:1 (349) (2003), 113–164 | MR

[23] Stiltes T. I., Issledovaniya o nepreryvnykh drobyakh, Kharkovskaya matematicheskaya biblioteka / Kniga pervaya, ONTI, NKTP, DNTVU, Kharkov; Kiev, 1936

[24] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978 | MR

[25] Khovanskii A. N., Prilozhenie tsepnykh drobei i ikh obobschenii k voprosam priblizhennogo analiza, Gostekhizdat, M., 1956

[26] Shilov G. E., Prostaya gamma. Ustroistvo muzykalnoi shkaly, Populyarnye lektsii po matematike, 37, Nauka, M., 1980

[27] Berend D. and Frougny C., “Computability by finite automata and Pisot bases”, Math. Systems Theory, 27:3 (1994), 275–282 | DOI | MR | Zbl

[28] BerestovskĭV. N. and Nikonorov Yu. G., Continued Fractions, Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers, Preprint N 31, Max Plank Institut für Mathematik, Bonn, 2004

[29] Bertin M. J. et al., Pisot and Salem Numbers, Birkhäuser, Basel, 1992 | MR

[30] Boyd D. W. and Mauldin R. D., “The order type of the set of Pisot numbers”, Topology Appl., 69:2 (1996), 115–120 | DOI | MR | Zbl

[31] Bradley S., “A geometric connection between generalized Fibonacci sequences and nearly golden section”, Fibonacci Quart., 38:2 (2000), 174–179 | MR | Zbl

[32] Bugeaud Y., “On a property of Pisot numbers and related questions”, Acta Math. Hungar., 73:1–2 (1996), 33–39 | DOI | MR | Zbl

[33] Fatou P., “Séries trigonométriques et séries de Taylor”, Acta Math., 30 (1906), 335–400 | DOI | MR | Zbl

[34] Hardcastle D. M. and Khanin K., “Continued fractions and the $d$-dimensional Gauss transformation”, Comm. Math. Phys., 215:3 (2001), 487–515 | DOI | MR | Zbl

[35] Koksma J. F., “Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins”, Compositio Math., 2 (1935), 250–258 | MR | Zbl

[36] Koshy T., Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001 | MR | Zbl

[37] Lewis J. and Zagier D., “Period functions and the Selberg zeta-function for the modular group”, The Mathematical Beauty of Physics, Adv. Series in Math. Physics, 24, World Scientific, Singapore, 1997, 83–97 | MR | Zbl

[38] Melham R., “Sums involving Fibonacci and Pell numbers”, Portugal. Math., 56:3 (1999), 309–317 | MR | Zbl

[39] Pisot Ch., “La répartition modulo 1 et les nombres algébriques (Thèse)”, Ann. Sci. École Norm. Sup. (7), II (1938), 205–248 | MR | Zbl

[40] Vulakh L. Ya., “Units in some families of algebraic number fields”, Trans. Amer. Math. Soc., 356:6 (2004), 2325–2348 | DOI | MR | Zbl