On Rings Asymptotically Close to Associative Rings
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 29-96

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of this work is an extension of A. R. Kemer's results to a rather broad class of rings close to associative rings, over a field of characteristic 0 (in particular, this class includes the varieties generated by finite-dimensional alternative and Jordan rings). We prove the finite-basedness of systems of identities (the Specht property), the representability of finitely-generated relatively free algebras, and the rationality of their Hilbert series. For this purpose, we extend the Razymslov-Zubrilin theory to Kemer polynomials. For a rather broad class of varieties, we prove Shirshov's theorem on height.
@article{MT_2007_10_1_a2,
     author = {A. Ya. Belov},
     title = {On {Rings} {Asymptotically} {Close} to {Associative} {Rings}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {29--96},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a2/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - On Rings Asymptotically Close to Associative Rings
JO  - Matematičeskie trudy
PY  - 2007
SP  - 29
EP  - 96
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a2/
LA  - ru
ID  - MT_2007_10_1_a2
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T On Rings Asymptotically Close to Associative Rings
%J Matematičeskie trudy
%D 2007
%P 29-96
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a2/
%G ru
%F MT_2007_10_1_a2
A. Ya. Belov. On Rings Asymptotically Close to Associative Rings. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 29-96. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a2/