Geometry of Ideal Boundaries of Geodesic Spaces with Nonpositive Curvature in the Sense of Busemann
Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 16-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish relations between different approaches to the ideal closure of a geodesic metric space with nonpositive curvature in the sense of Busemann. We construct the counterexample showing that the Busemann ideal closure can differ from the geodesic closure.
@article{MT_2007_10_1_a1,
     author = {P. D. Andreev},
     title = {Geometry of {Ideal} {Boundaries} of {Geodesic} {Spaces} with {Nonpositive} {Curvature} in the {Sense} of {Busemann}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2007_10_1_a1/}
}
TY  - JOUR
AU  - P. D. Andreev
TI  - Geometry of Ideal Boundaries of Geodesic Spaces with Nonpositive Curvature in the Sense of Busemann
JO  - Matematičeskie trudy
PY  - 2007
SP  - 16
EP  - 28
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2007_10_1_a1/
LA  - ru
ID  - MT_2007_10_1_a1
ER  - 
%0 Journal Article
%A P. D. Andreev
%T Geometry of Ideal Boundaries of Geodesic Spaces with Nonpositive Curvature in the Sense of Busemann
%J Matematičeskie trudy
%D 2007
%P 16-28
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2007_10_1_a1/
%G ru
%F MT_2007_10_1_a1
P. D. Andreev. Geometry of Ideal Boundaries of Geodesic Spaces with Nonpositive Curvature in the Sense of Busemann. Matematičeskie trudy, Tome 10 (2007) no. 1, pp. 16-28. http://geodesic.mathdoc.fr/item/MT_2007_10_1_a1/