Isomorphisms, Definable Relations, and Scott Families for Integral Domains and Commutative Semigroups
Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 172-190

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we prove the following four assertions: (1) For every computable successor ordinal $\alpha$, there exists a $\Delta^0_\alpha$-categorical integral domain (commutative semigroup) which is not relatively $\Delta^0_\alpha$-categorical (i. e., no formally $\Sigma^0_\alpha$ Scott family exists for such a structure). (2) For every computable successor ordinal $\alpha$, there exists an intrinsically $\Sigma^0_\alpha$-relation on the universe of a computable integral domain (commutative semigroup) which is not a relatively intrinsically $\Sigma^0_\alpha$-relation. (3) For every computable successor ordinal $\alpha$ and finite $n$, there exists an integral domain (commutative semigroup) whose $\Delta^0_\alpha$-dimension is equal to $n$. (4) For every computable successor ordinal $\alpha$, there exists an integral domain (commutative semigroup) with presentations only in the degrees of sets $X$ such that $\Delta^0_\alpha(X)$ is not $\Delta^0_\alpha$. In particular, for every finite $n$, there exists an integral domain (commutative semigroup) with presentations only in the degrees that are not $n$-low.
@article{MT_2006_9_2_a7,
     author = {D. A. Tusupov},
     title = {Isomorphisms, {Definable} {Relations,} and {Scott} {Families} for {Integral} {Domains} and {Commutative} {Semigroups}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {172--190},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_2_a7/}
}
TY  - JOUR
AU  - D. A. Tusupov
TI  - Isomorphisms, Definable Relations, and Scott Families for Integral Domains and Commutative Semigroups
JO  - Matematičeskie trudy
PY  - 2006
SP  - 172
EP  - 190
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_2_a7/
LA  - ru
ID  - MT_2006_9_2_a7
ER  - 
%0 Journal Article
%A D. A. Tusupov
%T Isomorphisms, Definable Relations, and Scott Families for Integral Domains and Commutative Semigroups
%J Matematičeskie trudy
%D 2006
%P 172-190
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_2_a7/
%G ru
%F MT_2006_9_2_a7
D. A. Tusupov. Isomorphisms, Definable Relations, and Scott Families for Integral Domains and Commutative Semigroups. Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 172-190. http://geodesic.mathdoc.fr/item/MT_2006_9_2_a7/