The Lattice of Extensions of the~Minimal Logic
Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 60-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we survey the results on the lattice of extensions of the minimal logic $\mathbf{Lj}$, a paraconsistent analog of the intuitionistic logic $\mathbf{Li}$. Unlike the well-studied classes of explosive logics, the class of extensions of the minimal logic has an interesting global structure. This class decomposes into the disjoint union of the class {\tt Int} of intermediate logics, the class {\tt Neg} of negative logics with a degenerate negation, and the class {\tt Par} of properly paraconsistent extensions of the minimal logic. The classes {\tt Int} and {\tt Neg} are well studied, whereas the study of {\tt Par} can be reduced to some extent to the classes {\tt Int} and {\tt Neg}.
@article{MT_2006_9_2_a3,
     author = {S. P. Odintsov},
     title = {The {Lattice} of {Extensions} of {the~Minimal} {Logic}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {60--108},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_2_a3/}
}
TY  - JOUR
AU  - S. P. Odintsov
TI  - The Lattice of Extensions of the~Minimal Logic
JO  - Matematičeskie trudy
PY  - 2006
SP  - 60
EP  - 108
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_2_a3/
LA  - ru
ID  - MT_2006_9_2_a3
ER  - 
%0 Journal Article
%A S. P. Odintsov
%T The Lattice of Extensions of the~Minimal Logic
%J Matematičeskie trudy
%D 2006
%P 60-108
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_2_a3/
%G ru
%F MT_2006_9_2_a3
S. P. Odintsov. The Lattice of Extensions of the~Minimal Logic. Matematičeskie trudy, Tome 9 (2006) no. 2, pp. 60-108. http://geodesic.mathdoc.fr/item/MT_2006_9_2_a3/

[1] Kolmogorov A. N., “O printsipe tercium non datur”, Mat. sb., 32 (1925), 646–667 | Zbl

[2] Odintsov S. P., “Propozitsionalnye otnositelno konstruktivnye sistemy”, Modeli kognitivnykh protsessov, Vychislitelnye sistemy, 158, Izd-vo In-ta matematiki, Novosibirsk, 1997, 110–126 | MR

[3] Odintsov S. P., “Ob izomorfakh logiki klassicheskoi oproverzhimosti i ikh obobscheniyakh”, Tr. seminara logicheskogo tsentra, IF RAN, M., 1998, 48–61 | MR | Zbl

[4] Odintsov S. P., “Algebraicheskaya semantika i semantika Kripke dlya rasshirenii minimalnoi logiki”, Logicheskie issledovaniya (elektronnyi zhurnal), 1999, no. 2

[5] Odintsov S. P., “Negativno ekvivalentnye rasshireniya minimalnoi logiki i ikh logiki protivorechii”, Logicheskie issledovaniya, 7, ed. A. S. Karpenko, Nauka, M., 2000, 119–127 | MR | Zbl

[6] Samokhvalov K. F., “Otnositelno konstruktivnye sistemy”, Yazyki spetsifikatsii i logicheskoe programmirovanie, Vychislitelnye sistemy, 124, Izd-vo In-ta matematiki, Novosibirsk, 1988, 99–113 | MR

[7] Yankov V. A., “Ob otnoshenii mezhdu vyvodimostyu v intuitsionistskom propozitsionalnom ischislenii i konechnymi implikativnymi strukturami”, Dokl. AN SSSR, 151 (1963), 1293–1294 | MR | Zbl

[8] Yankov V. A., “Postroenie posledovatelnosti silno nezavisimykh superintuitsionistskikh propozitsionalnykh ischislenii”, Dokl. AN SSSR, 181 (1968), 33–34 | MR | Zbl

[9] Bernays P., “Review of [13] and [14]”, J. Symbolic Logic, 18 (1953), 266–268 | DOI | MR

[10] Burris S. and Sankappanavar H. P., A Course in Universal Algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, New York; Berlin, 1981 | MR | Zbl

[11] Chagrov A. and Zakharyaschev M., Modal Logic, Clarendon Press, Oxford, 1997 | MR | Zbl

[12] da Costa N. C. A. and Beziau J.-Y., “Carnot's logic”, Bull. Sect. Logic Univ. Lodz., 22:3 (1993), 98–105 | MR | Zbl

[13] Curry H. B., “On the definition of negation by a fixed proposition in the inferential calculus”, J. Symbolic Logic, 17 (1952), 98–104 | DOI | MR | Zbl

[14] Curry H. B., “The system $LD$”, J. Symbolic Logic, 17 (1952), 35–42 | DOI | MR | Zbl

[15] Curry H. B., Foundations of Mathematical Logic, McGrow-Hill Book Company, New York, etc., 1963 | MR | Zbl

[16] Fine K., “Logics containing $K4$. I”, J. Symbolic Logic, 39 (1974), 31–42 | DOI | MR | Zbl

[17] Fine K., “Logics containing $K4$. II”, J. Symbolic Logic, 50 (1985), 619–651 | DOI | MR | Zbl

[18] Heyting A., “Die formalen Regeln der intuitionistischen Logik. I, II, III”, Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl., 1930, 42–56 ; 57–71 ; 158–169 | Zbl

[19] Heyting A., Intuitionism. An Introduction, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1971 | MR | Zbl

[20] Jaskowski S., “Propositional calculus for contradictory deductive systems”, Studia Logica, 24 (1969), 143–160 | DOI | MR | Zbl

[21] Johansson I., “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compositio Math., 4 (1936), 119–136 | MR | Zbl

[22] Kanger S., “A note on partial postulate sets for propositional logic”, Theoria, 21 (1955), 99–104 | MR | Zbl

[23] Karpenko A. S., “Two three-valued isomorphs of classical propositional logic and their combinations”, Abstracts of the First World Congress on Paraconsistency, Ghent, 1997, 92–94

[24] Kolmogoroff A., “Zur Deutung der intutionistischen Logik”, Math. Z., 35:1 (1932), 58–65 | DOI | MR | Zbl

[25] Kripke S. A., “Distinguished constituents (abstracts)”, J. Symbolic Logic, 24 (1959), 323 | MR

[26] Łukasiewicz J., “A system of modal logic”, The Journal of Computing Systems, 1 (1953), 111–149 ; Reprinted in [28] (1970), 352–390 | MR

[27] Łukasiewicz J., Aristotle's Syllogistic from the Standpoint of Modern Formal Logic, 2nd enlarged edition, Clarendon Press, Oxford, 1957

[28] Łukasiewicz J., Selected Works, Studies in Logic and the Foundations of Mathematics, ed. L. Borkowski, North-Holland Publishing Co., Amsterdam; London, 1970 | MR

[29] Maksimova L. L., “On maximal intermediate logics with the disjunction property”, Studia Logica, 45:1 (1986), 69–75 | DOI | MR | Zbl

[30] McKay S. G., “On finite logics”, Indag. Math., 29:3 (1967), 363–365 | MR

[31] Miura S., “A remark on the intersection of two logics”, Nagoya Math. J., 26:2 (1966), 167–171 | MR | Zbl

[32] Nelson D., “Negation and separation of concepts in constructive systems”, Constructivity in Mathematics, Studies in Logic and the Foundations of Mathematics, Notrh-Holland, Amsterdam, 1959, 208–225 | MR

[33] Odintsov S. P., “Maximal paraconsistent extension of Johansson logic”, Logique et Anal. (N.S.), 41:161–163 (1998), 107–120 | MR | Zbl

[34] Odintsov S. P., “Representation of $j$-algebras and Segerberg's logics”, Logique et Anal. (N.S.), 42:165–166 (1999), 81–106 | MR | Zbl

[35] Odintsov S. P., “Logic of classical refutability and class of extensions of minimal logic”, Logic Log. Philos., 2002, no. 9, 91–107 | MR

[36] Odintsov S. P., “Negative equivalence of extensions of minimal logic”, Studia Logica, 78:3 (2004), 417–442 | DOI | MR | Zbl

[37] Odintsov S. P., “On the structure of paraconsistent extensions of Johansson's logic”, J. Appl. Logic, 3:1 (2005), 43–65 | DOI | MR | Zbl

[38] Ono H., “Kripke models and intermediate logics”, Publ. Res. Inst. Math. Sci., 6 (1970), 461–476 | DOI | MR

[39] Porte J., “The $\Omega$-system and the $\Lambda$-system of modal logic”, Notre Dame J. Formal Logic, 20:4 (1979), 915–920 | DOI | MR | Zbl

[40] Porte J., “Łukasiewicz's $L$-modal system and classical refut ability”, Logique et Anal. (N.S.), 27:105 (1984), 87–92 | MR | Zbl

[41] Priest G., Routley R., and Norman J. (eds.), Paraconsistent Logic. Essays on the Inconsistent, Philosophia Verlag, München, 1989 | MR

[42] Rasiowa H., An Algebraic Approach to Nonclassical Logics, Studies in Logic and the Foundations of Mathematics, 78, North-Holland, Amsterdam, etc., 1974 | MR | Zbl

[43] Rautenberg W., Klassische und Nichtclassische Aussagenlogik, Bd 22, Vieweg Sohn, Braunschweig, 1979 | MR | Zbl

[44] Rescher N., Many-Valued Logic, McGraw-Hill Book Corp., New York, etc., 1969 | Zbl

[45] Segerberg K., “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR

[46] Sette A. M., “On the propositional calculus $P^1$”, Math. Japon., 18:3 (1973), 173–180 | MR | Zbl

[47] Suzuki N.-Y., “Constructing a continuum of predicate extensions of each intermediate propositional logic”, Studia Logica, 54:2 (1995), 173–198 | DOI | MR | Zbl

[48] Urbas I., “A note on “Carnot's logic””, Bull. Sect. Logic Univ. Lodz., 23:3 (1994), 118–125 | MR | Zbl

[49] Wojtylak P., “Mutual interpretability of sentential logic. I”, Rep. Math. Logic, 1981, no. 11, 69–89 | MR | Zbl

[50] Wojtylak P., “Mutual interpretability of sentential logic. II”, Rep. Math. Logic, 1981, no. 12, 51–66 | MR | Zbl

[51] Woodruff P. W., “A note on $JP'$”, Theoria, 36 (1970), 183–184 | Zbl

[52] Wroński A., “The degree of completeness of some fragments of the intuitionistic propositional logic”, Rep. Math. Logic, 1974, no. 2, 55–61 | MR | Zbl

[53] Wroński A., “On the cardinalities of matrices strongly adequate for the intuitionistic propositional logic”, Rep. Math. Logic, 1974, no. 3, 67–72 | MR | Zbl