A Pointwise Selection Principle for Functions of a~Single Variable with Values in a~Uniform Space
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 176-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a sequence of functions, from a subset of the real line into a Hausdorff uniform space, we present a new sufficient condition for the sequence to contain a pointwise convergent subsequence. This new condition is much more weaker than the available conditions on the boundedness of generalized variations of functions, and reads in terms of some growth of moduli of variation of the functions of the sequence. Moreover, using the notion of the moduli of variation we study proper functions (i. e. those having one-sided left and right limits at each point) with respect to a dense subset and show that the Helly type selection principles involving the boundedness of generalized variations of the functions of the sequence, which are new in the context of functions with values in a uniform space, are consequences of our main result on the existence of a pointwise convergent subsequence.
@article{MT_2006_9_1_a8,
     author = {V. V. Chistyakov},
     title = {A {Pointwise} {Selection} {Principle} for {Functions} of {a~Single} {Variable} with {Values} in {a~Uniform} {Space}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {176--204},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a8/}
}
TY  - JOUR
AU  - V. V. Chistyakov
TI  - A Pointwise Selection Principle for Functions of a~Single Variable with Values in a~Uniform Space
JO  - Matematičeskie trudy
PY  - 2006
SP  - 176
EP  - 204
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a8/
LA  - ru
ID  - MT_2006_9_1_a8
ER  - 
%0 Journal Article
%A V. V. Chistyakov
%T A Pointwise Selection Principle for Functions of a~Single Variable with Values in a~Uniform Space
%J Matematičeskie trudy
%D 2006
%P 176-204
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a8/
%G ru
%F MT_2006_9_1_a8
V. V. Chistyakov. A Pointwise Selection Principle for Functions of a~Single Variable with Values in a~Uniform Space. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 176-204. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a8/

[1] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[2] Kelli Dzh. L., Obschaya topologiya, 2-e izd., Nauka, M., 1981 | MR

[3] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974 | MR

[4] Tolstonogov A. A., “O nekotorykh svoistvakh prostranstva pravilnykh funktsii”, Mat. zametki, 35:6 (1984), 803–812 | MR | Zbl

[5] Chanturiya Z. A., “Modul izmeneniya funktsii i ego primeneniya v teorii ryadov Fure”, Dokl. AN SSSR, 214:1 (1974), 63–66 | MR | Zbl

[6] Chanturiya Z. A., “Ob absolyutnoi skhodimosti ryadov Fure”, Mat. zametki, 18:2 (1975), 185–192 | MR | Zbl

[7] Chistyakov V. V., “K teorii mnogoznachnykh otobrazhenii ogranichennoi variatsii odnoi veschestvennoi peremennoi”, Mat. sb., 189:5 (1998), 153–176 | MR | Zbl

[8] Chistyakov V. V., “O mnogoznachnykh otobrazheniyakh konechnoi obobschennoi variatsii”, Mat. zametki, 71:4 (2002), 611–632 | MR | Zbl

[9] Chistyakov V. V., “A new pointwise selection principle for mappings of one real variable”, Mezhdu nar. shkola-konf. po analizu i geometrii, posvyaschennaya 75-letiyu akademika Yu. G. Reshetnyaka, Tez. dokl., Novosibirsk, 2004, 30–31 | MR

[10] Shvarts L., Analiz, t. 1, Mir, M., 1972

[11] Belov S. A. and Chistyakov V. V., “A selection principle for mappings of bounded variation”, J. Math. Anal. Appl., 249:2 (2000), 351–366 ; Comments ibid. 278 (2003), 250–251 | DOI | MR | Zbl | DOI | MR

[12] Chistyakov V. V., “On mappings of bounded variation”, J. Dynam. Control Systems, 3:2 (1997), 261–289 | DOI | MR | Zbl

[13] Chistyakov V. V., “Selections of bounded variation”, J. Appl. Anal., 10:1 (2004), 1–82 | MR

[14] Chistyakov V. V., “A selection principle for functions of a real variable”, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia, LIII:1 (2005), 25–43 | MR

[15] Chistyakov V. V., “The optimal form of selection principles for functions of a real variable”, J. Math. Anal. Appl., 310:2 (2005), 609–625 | MR | Zbl

[16] Gnilka S., “On the generalized Helly's theorem”, Funct. Approx. Comment. Math., 4 (1976), 109–112 | MR | Zbl

[17] Helly E., “Über lineare Funktionaloperationen”, Sitzungsber. Naturwiss. Kl. Kaiserlichen Akad. Wiss. Wien., 121 (1912), 265–297 | Zbl

[18] Jeffery R. L., “Generalized integrals with respect to functions of bounded variation”, Canad. J. Math., 10 (1958), 617–628 | MR

[19] Musielak J. and Orlicz W., “On generalized variations. I”, Studia Math., 18 (1959), 11–41 | MR | Zbl

[20] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | MR | Zbl

[21] Schembari N. P. and Schramm M., “$\Phi\mathrm V[h]$ and Riemann–Stieltjes integration”, Colloq. Math., 60/61:2 (1990), 421–441 | MR | Zbl

[22] Schramm M., “Functions of $\Phi$-bounded variation and Riemann–Stieltjes integration”, Trans. Amer. Math. Soc., 287:1 (1985), 49–63 | DOI | MR | Zbl

[23] Waterman D., “On $\Lambda$-bounded variation”, Studia Math., 57:1 (1976), 33–45 | MR | Zbl