Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2006_9_1_a6, author = {E. D. Rodionov and V. V. Slavskii and L. N. Chibrikova}, title = {Locally {Conformally} {Homogeneous} {Pseudo-Riemannian} {Spaces}}, journal = {Matemati\v{c}eskie trudy}, pages = {130--168}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/} }
TY - JOUR AU - E. D. Rodionov AU - V. V. Slavskii AU - L. N. Chibrikova TI - Locally Conformally Homogeneous Pseudo-Riemannian Spaces JO - Matematičeskie trudy PY - 2006 SP - 130 EP - 168 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/ LA - ru ID - MT_2006_9_1_a6 ER -
E. D. Rodionov; V. V. Slavskii; L. N. Chibrikova. Locally Conformally Homogeneous Pseudo-Riemannian Spaces. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 130-168. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/
[1] Alekseevskii D. V., “Odnorodnye rimanovy prostranstva otritsatelnoi krivizny”, Mat. sb., 96(138) (1975), 93–117 | MR | Zbl
[2] Besse A., Mnogoobraziya Einshteina, t. 1, 2, Mir, M., 1990 | MR | Zbl
[3] Gato M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR
[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, t. 1, Editorial URSS, M., 1998 | MR
[5] Reshetnik Yu. G., Teoremy ustoichivosti v geometrii i analize, Izd-vo In-ta matematiki RAN, Novosibirsk, 1996 | MR
[6] Rodionov E. D., Slavskii V. V., “Lokalno konformno odnorodnye prostranstva”, Dokl. RAN, 387:3 (2002), 314–317 | MR | Zbl
[7] Collinson S. D., “A comment on the integrability conditions of the conformal Killing equation”, Gen. Relativity Gravitation, 21:9 (1989), 979–980 | DOI | MR | Zbl
[8] Heber J., “Noncompact homogeneous Einstein Spaces”, Invent. Math., 133:2 (1998), 279–352 | DOI | MR | Zbl
[9] Milnor J., “Curvatures of left-invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl
[10] Rodionov E. D. and Slavskii V. V., “Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces”, Comment. Math. Univ. Carolin., 43:2 (2002), 271–282 | MR | Zbl
[11] Tricerri F. and Vanhecke L., Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lecture Note Ser., 83, Cambridge Univ. Press, Cambridge, etc., 1983 | MR | Zbl
[12] Yano K., The Theory of Lie Derivatives and Its Applications, North-Holland Publishing Co.; P. Noordhoff Ltd.; Interscience Publishers Inc., Amsterdam; Groningen; New York, 1957 | MR | Zbl