Locally Conformally Homogeneous Pseudo-Riemannian Spaces
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 130-168

Voir la notice de l'article provenant de la source Math-Net.Ru

Locally homogeneous Riemannian spaces were studied in many papers. Locally conformally homogeneous Riemannian spaces were considered in [1]. Moreover, the theorem claiming that every such space is either conformally flat or conformally equivalent to a locally homogeneous Riemannian space was proved. In this article, we study locally conformally homogeneous pseudo-Riemannian spaces and prove a theorem on their structure. Using three-dimensional Lie groups and the six-dimensional Heisenberg group [2], we construct some examples showing the difference between the Riemannian and pseudo-Riemannian cases for such spaces.
@article{MT_2006_9_1_a6,
     author = {E. D. Rodionov and V. V. Slavskii and L. N. Chibrikova},
     title = {Locally {Conformally} {Homogeneous} {Pseudo-Riemannian} {Spaces}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {130--168},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/}
}
TY  - JOUR
AU  - E. D. Rodionov
AU  - V. V. Slavskii
AU  - L. N. Chibrikova
TI  - Locally Conformally Homogeneous Pseudo-Riemannian Spaces
JO  - Matematičeskie trudy
PY  - 2006
SP  - 130
EP  - 168
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/
LA  - ru
ID  - MT_2006_9_1_a6
ER  - 
%0 Journal Article
%A E. D. Rodionov
%A V. V. Slavskii
%A L. N. Chibrikova
%T Locally Conformally Homogeneous Pseudo-Riemannian Spaces
%J Matematičeskie trudy
%D 2006
%P 130-168
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/
%G ru
%F MT_2006_9_1_a6
E. D. Rodionov; V. V. Slavskii; L. N. Chibrikova. Locally Conformally Homogeneous Pseudo-Riemannian Spaces. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 130-168. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/