Locally Conformally Homogeneous Pseudo-Riemannian Spaces
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 130-168
Voir la notice de l'article provenant de la source Math-Net.Ru
Locally homogeneous Riemannian spaces were studied in many papers. Locally conformally homogeneous Riemannian spaces were considered in [1]. Moreover, the theorem claiming that every such space is either conformally flat or conformally equivalent to a locally homogeneous Riemannian space was proved.
In this article, we study locally conformally homogeneous pseudo-Riemannian spaces and prove a theorem on their structure. Using three-dimensional Lie groups and the six-dimensional Heisenberg group [2], we construct some examples showing the difference between the Riemannian and pseudo-Riemannian cases for such spaces.
@article{MT_2006_9_1_a6,
author = {E. D. Rodionov and V. V. Slavskii and L. N. Chibrikova},
title = {Locally {Conformally} {Homogeneous} {Pseudo-Riemannian} {Spaces}},
journal = {Matemati\v{c}eskie trudy},
pages = {130--168},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/}
}
TY - JOUR AU - E. D. Rodionov AU - V. V. Slavskii AU - L. N. Chibrikova TI - Locally Conformally Homogeneous Pseudo-Riemannian Spaces JO - Matematičeskie trudy PY - 2006 SP - 130 EP - 168 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/ LA - ru ID - MT_2006_9_1_a6 ER -
E. D. Rodionov; V. V. Slavskii; L. N. Chibrikova. Locally Conformally Homogeneous Pseudo-Riemannian Spaces. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 130-168. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a6/