Boundary Behavior of Analytic Riesz Products in the~Disk
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 34-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a fractal-type class of conformal mappings and formulate for it a criterion of almost everywhere existence of the angular limits of the derivatives in terms of the moduli of the coefficients of the logarithm of the derivative. Moreover, we establish a connection between the asymptotic variance and spectrum of the integral means of these mappings.
@article{MT_2006_9_1_a2,
     author = {I. R. Kayumov},
     title = {Boundary {Behavior} of {Analytic} {Riesz} {Products} in {the~Disk}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {34--51},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - Boundary Behavior of Analytic Riesz Products in the~Disk
JO  - Matematičeskie trudy
PY  - 2006
SP  - 34
EP  - 51
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/
LA  - ru
ID  - MT_2006_9_1_a2
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T Boundary Behavior of Analytic Riesz Products in the~Disk
%J Matematičeskie trudy
%D 2006
%P 34-51
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/
%G ru
%F MT_2006_9_1_a2
I. R. Kayumov. Boundary Behavior of Analytic Riesz Products in the~Disk. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/