Boundary Behavior of Analytic Riesz Products in the~Disk
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 34-51
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a fractal-type class of conformal mappings and formulate for it a criterion of almost everywhere existence of the angular limits of the derivatives in terms of the moduli of the coefficients of the logarithm of the derivative. Moreover, we establish a connection between the asymptotic variance and spectrum of the integral means of these mappings.
@article{MT_2006_9_1_a2,
author = {I. R. Kayumov},
title = {Boundary {Behavior} of {Analytic} {Riesz} {Products} in {the~Disk}},
journal = {Matemati\v{c}eskie trudy},
pages = {34--51},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/}
}
I. R. Kayumov. Boundary Behavior of Analytic Riesz Products in the~Disk. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/