Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2006_9_1_a2, author = {I. R. Kayumov}, title = {Boundary {Behavior} of {Analytic} {Riesz} {Products} in {the~Disk}}, journal = {Matemati\v{c}eskie trudy}, pages = {34--51}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/} }
I. R. Kayumov. Boundary Behavior of Analytic Riesz Products in the~Disk. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a2/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] Zigmund A., Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR
[3] Markushevich A. I., “Nekotorye voprosy teorii granichnykh svoistv analiticheskikh funktsii”, Uspekhi mat. nauk, 4:4(32) (1949), 3–18 | MR | Zbl
[4] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.; L., 1950
[5] Khardi G., Littlvud D., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948
[6] Hamilton D. N., “Length of Julia curves”, Pacific J. Math., 169:1 (1995), 75–93 | MR | Zbl
[7] Kayumov I. R., “The law of the iterated logarithm for locally univalent functions”, Ann. Acad. Sci. Fenn. Math., 27:2 (2002), 357–364 | MR | Zbl
[8] Littlewood J., “On the coefficients of schlicht functions”, Quart. J. Math. Oxford Ser. (2), 9 (1938), 14–20 | DOI | MR | Zbl
[9] Makarov N. G., “Fine structure of harmonic measure”, St. Petersburg Math. J., 10:2 (1999), 217–268 | MR
[10] Pommerenke Ch., “On Bloch functions”, J. London Math. Soc. (2), 2 (1970), 689–695 | MR | Zbl
[11] Pommerenke Ch., Boundary Behavior of Conformal Maps, Fundamental Principles of Mathematical Sciences, Springer-Verlag, Berlin, 1992 | MR | Zbl
[12] Przytycki F., Urbanski M., and Zdunik A., “Harmonic, Gibbs, and Hausdorff measures on repellers for holomorphic maps. I, II”, Ann. of Math. (2), 130:1 (1989), 1–40 ; Studia Math., 97:3 (1991), 189–225 | DOI | MR | Zbl | MR | Zbl