The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a vector-valued version of the Banach–Steinhaus uniform boundedness principle for universally complete Banach–Kantorovich spaces over the ring of measurable functions. We prove that, if a family of bounded linear operators in a universally complete Banach–Kantorovich space is pointwise bounded, then it is uniformly bounded. We also present applications to weak convergence and weak boundedness in universally complete Banach–Kantorovich spaces.
@article{MT_2006_9_1_a1,
     author = {I. G. Ganiev and K. K. Kudaibergenov},
     title = {The {Banach--Steinhaus} {Uniform} {Boundedness} {Principle} for {Operators} in {Banach--Kantorovich} {Spaces} over~$L^0$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/}
}
TY  - JOUR
AU  - I. G. Ganiev
AU  - K. K. Kudaibergenov
TI  - The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$
JO  - Matematičeskie trudy
PY  - 2006
SP  - 21
EP  - 33
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/
LA  - ru
ID  - MT_2006_9_1_a1
ER  - 
%0 Journal Article
%A I. G. Ganiev
%A K. K. Kudaibergenov
%T The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$
%J Matematičeskie trudy
%D 2006
%P 21-33
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/
%G ru
%F MT_2006_9_1_a1
I. G. Ganiev; K. K. Kudaibergenov. The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/

[1] Ganiev P. G., Kudaibergenov K. K., “Teorema Banakha ob obratnom operatore v prostranstvakh Banakha — Kantorovicha”, Vladikavkazskii mat. zhurn., 6:3 (2004), 21–25 | MR | Zbl

[2] Ganiev P. G., Chilin V. P., “Izmerimye rassloeniya nekommutativnykh $L^p$-prostranstv, assotsiirovannykh s tsentroznachnym sledom”, Mat. trudy, 4:2 (2001), 27–41 | MR | Zbl

[3] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 63–211 | MR

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, Moskva, 1984 | MR | Zbl

[5] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985 | MR | Zbl

[6] Kusraev A. G., Mazhoriruemye operatory, Nauka, Moskva, 2003 | MR

[7] Rudin U., Funktsionalnyi analiz, Mir, Moskva, 1977 | MR

[8] Ganiev I. G. and Kudaybergenov K. K., “Measurable bundles of compact operators”, Methods Funct. Anal. Topol., 7:4 (2001), 1–5 | MR | Zbl