The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 21-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a vector-valued version of the Banach–Steinhaus uniform boundedness principle for universally complete Banach–Kantorovich spaces over the ring of measurable functions. We prove that, if a family of bounded linear operators in a universally complete Banach–Kantorovich space is pointwise bounded, then it is uniformly bounded. We also present applications to weak convergence and weak boundedness in universally complete Banach–Kantorovich spaces.
@article{MT_2006_9_1_a1,
     author = {I. G. Ganiev and K. K. Kudaibergenov},
     title = {The {Banach--Steinhaus} {Uniform} {Boundedness} {Principle} for {Operators} in {Banach--Kantorovich} {Spaces} over~$L^0$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/}
}
TY  - JOUR
AU  - I. G. Ganiev
AU  - K. K. Kudaibergenov
TI  - The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$
JO  - Matematičeskie trudy
PY  - 2006
SP  - 21
EP  - 33
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/
LA  - ru
ID  - MT_2006_9_1_a1
ER  - 
%0 Journal Article
%A I. G. Ganiev
%A K. K. Kudaibergenov
%T The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$
%J Matematičeskie trudy
%D 2006
%P 21-33
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/
%G ru
%F MT_2006_9_1_a1
I. G. Ganiev; K. K. Kudaibergenov. The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/