Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2006_9_1_a1, author = {I. G. Ganiev and K. K. Kudaibergenov}, title = {The {Banach--Steinhaus} {Uniform} {Boundedness} {Principle} for {Operators} in {Banach--Kantorovich} {Spaces} over~$L^0$}, journal = {Matemati\v{c}eskie trudy}, pages = {21--33}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/} }
TY - JOUR AU - I. G. Ganiev AU - K. K. Kudaibergenov TI - The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$ JO - Matematičeskie trudy PY - 2006 SP - 21 EP - 33 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/ LA - ru ID - MT_2006_9_1_a1 ER -
%0 Journal Article %A I. G. Ganiev %A K. K. Kudaibergenov %T The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$ %J Matematičeskie trudy %D 2006 %P 21-33 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/ %G ru %F MT_2006_9_1_a1
I. G. Ganiev; K. K. Kudaibergenov. The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a1/
[1] Ganiev P. G., Kudaibergenov K. K., “Teorema Banakha ob obratnom operatore v prostranstvakh Banakha — Kantorovicha”, Vladikavkazskii mat. zhurn., 6:3 (2004), 21–25 | MR | Zbl
[2] Ganiev P. G., Chilin V. P., “Izmerimye rassloeniya nekommutativnykh $L^p$-prostranstv, assotsiirovannykh s tsentroznachnym sledom”, Mat. trudy, 4:2 (2001), 27–41 | MR | Zbl
[3] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 63–211 | MR
[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, Moskva, 1984 | MR | Zbl
[5] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985 | MR | Zbl
[6] Kusraev A. G., Mazhoriruemye operatory, Nauka, Moskva, 2003 | MR
[7] Rudin U., Funktsionalnyi analiz, Mir, Moskva, 1977 | MR
[8] Ganiev I. G. and Kudaybergenov K. K., “Measurable bundles of compact operators”, Methods Funct. Anal. Topol., 7:4 (2001), 1–5 | MR | Zbl