Algebraic Properties of Covariant Derivative and Composition of Exponential Maps
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 3-20
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of calculating the Taylor series for a function $h_x\colon T_xX\times T_xX\to T_xX$ defined by the composition of exponential maps, where $X$ is a smooth manifold with affine connection and $x\in X$. We show that the homogeneous summands of such a series can be derived by applying the Lie bracket and covariant derivative to the arguments of the function which are extended to vector fields.
@article{MT_2006_9_1_a0,
author = {A. V. Gavrilov},
title = {Algebraic {Properties} of {Covariant} {Derivative} and {Composition} of {Exponential} {Maps}},
journal = {Matemati\v{c}eskie trudy},
pages = {3--20},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a0/}
}
A. V. Gavrilov. Algebraic Properties of Covariant Derivative and Composition of Exponential Maps. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a0/