Algebraic Properties of Covariant Derivative and Composition of Exponential Maps
Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 3-20
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of calculating the Taylor series for a function $h_x\colon T_xX\times T_xX\to T_xX$ defined by the composition of exponential maps, where $X$ is a smooth manifold with affine connection and $x\in X$. We show that the homogeneous summands of such a series can be derived by applying the Lie bracket and covariant derivative to the arguments of the function which are extended to vector fields.
@article{MT_2006_9_1_a0,
author = {A. V. Gavrilov},
title = {Algebraic {Properties} of {Covariant} {Derivative} and {Composition} of {Exponential} {Maps}},
journal = {Matemati\v{c}eskie trudy},
pages = {3--20},
year = {2006},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2006_9_1_a0/}
}
A. V. Gavrilov. Algebraic Properties of Covariant Derivative and Composition of Exponential Maps. Matematičeskie trudy, Tome 9 (2006) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/MT_2006_9_1_a0/
[1] Gavrilov A. V., “Dvoinoe eksponentsialnoe otobrazhenie i kovariantnoe differentsirovanie”, Sib. mat. zhurn., 48:1 (2007), 68–74 | MR
[2] Nomidzu K., Gruppy Li i differentsialnaya geometriya, Izd-vo inostr. lit., M., 1960 | MR
[3] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl
[4] Kobayashi Sh. and Nomizu K., Foundations of Differential Geometry, V. I; II, John Wiley Sons, New York; London, 1963 ; 1969 | Zbl
[5] Safarov Yu., “Pseudodifferential operators and linear connections”, Proc. London Math. Soc. (3), 74:2 (1997), 379–416 | DOI | MR | Zbl