On the~Number of Hamiltonian Cycles in Hamiltonian Dense Graphs
Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 199-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a Hamiltonian graph with $n$ vertices and $Cn(n-1)/2$ edges, where $3/4$. We show that $G$ contains at least $(C_1n)^{C_2n}$ Hamiltonian cycles, where $C_1$ and $C_2$ are some constants depending on $C$, and prove an analog of Dirac's theorem for graphs with prescribed edges.
@article{MT_2005_8_2_a7,
     author = {E. A. Okolnishnikova},
     title = {On {the~Number} of {Hamiltonian} {Cycles} in {Hamiltonian} {Dense} {Graphs}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {199--206},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2005_8_2_a7/}
}
TY  - JOUR
AU  - E. A. Okolnishnikova
TI  - On the~Number of Hamiltonian Cycles in Hamiltonian Dense Graphs
JO  - Matematičeskie trudy
PY  - 2005
SP  - 199
EP  - 206
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2005_8_2_a7/
LA  - ru
ID  - MT_2005_8_2_a7
ER  - 
%0 Journal Article
%A E. A. Okolnishnikova
%T On the~Number of Hamiltonian Cycles in Hamiltonian Dense Graphs
%J Matematičeskie trudy
%D 2005
%P 199-206
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2005_8_2_a7/
%G ru
%F MT_2005_8_2_a7
E. A. Okolnishnikova. On the~Number of Hamiltonian Cycles in Hamiltonian Dense Graphs. Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 199-206. http://geodesic.mathdoc.fr/item/MT_2005_8_2_a7/

[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990

[2] Okolnishnikova E. A., “O nekotorykh kombinatornykh zadachakh, voznikayuschikh v teorii slozhnosti”, Sintez i slozhnost upravlyayuschikh sistem, Tr. XV mezhdunar. shkoly-seminara (Novosibirsk, 18–23 oktyabrya 2004 g.), Izd-vo In-ta matematiki, Novosibirsk, 2004, 57–61

[3] Egawa Y., Faudree R. J., Györi E., Ishigami Y., Schelp R. H., and Wang H., “Vertex-disjoint cycles containing specified edges”, Graphs Combin., 16:1 (2000), 81–92 | DOI | MR | Zbl

[4] Gould R. J., “Advances on the Hamiltonian problem — a survey”, Graphs Combin., 19:1 (2003), 7–52 | DOI | MR | Zbl

[5] Horak P. and Stacho L., “A lower bound on the number of Hamiltonian cycles”, Discrete Math., 222:1–3 (2000), 275–280 | DOI | MR | Zbl

[6] Teunter R. H. and van der Poort E. S., “The maximum number of Hamiltonian cycles in graphs with a fixed number of vertices and edges”, Oper. Res. Lett., 26:2 (2000), 91–98 | DOI | MR | Zbl