@article{MT_2005_8_2_a7,
author = {E. A. Okolnishnikova},
title = {On {the~Number} of {Hamiltonian} {Cycles} in {Hamiltonian} {Dense} {Graphs}},
journal = {Matemati\v{c}eskie trudy},
pages = {199--206},
year = {2005},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2005_8_2_a7/}
}
E. A. Okolnishnikova. On the Number of Hamiltonian Cycles in Hamiltonian Dense Graphs. Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 199-206. http://geodesic.mathdoc.fr/item/MT_2005_8_2_a7/
[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990
[2] Okolnishnikova E. A., “O nekotorykh kombinatornykh zadachakh, voznikayuschikh v teorii slozhnosti”, Sintez i slozhnost upravlyayuschikh sistem, Tr. XV mezhdunar. shkoly-seminara (Novosibirsk, 18–23 oktyabrya 2004 g.), Izd-vo In-ta matematiki, Novosibirsk, 2004, 57–61
[3] Egawa Y., Faudree R. J., Györi E., Ishigami Y., Schelp R. H., and Wang H., “Vertex-disjoint cycles containing specified edges”, Graphs Combin., 16:1 (2000), 81–92 | DOI | MR | Zbl
[4] Gould R. J., “Advances on the Hamiltonian problem — a survey”, Graphs Combin., 19:1 (2003), 7–52 | DOI | MR | Zbl
[5] Horak P. and Stacho L., “A lower bound on the number of Hamiltonian cycles”, Discrete Math., 222:1–3 (2000), 275–280 | DOI | MR | Zbl
[6] Teunter R. H. and van der Poort E. S., “The maximum number of Hamiltonian cycles in graphs with a fixed number of vertices and edges”, Oper. Res. Lett., 26:2 (2000), 91–98 | DOI | MR | Zbl