Definability of 1-Types in Weakly $o$-Minimal Theories
Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 3-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we prove a criterion for definability of 1-types over sets in weakly $o$-minimal theories in terms of left and right convergences of a formula to a type. Van den Dries proved that every type over the field of reals is definable. Marker and Steinhorn strengthened his result. They (and, later, Pillay) proved the following assertion. Let $M\prec N$ be a pair of models of some $o$-minimal theory. If, for each element of $N$, the type of this element over $M$ is definable then, for each tuple of elements of $N$, the type of this tuple over $M$ is definable. We construct a weakly $o$-minimal theory for which the Marker–Steinhorn theorem fails; i. e., some pair of models of the theory possesses the following property: For all elements of the larger model, the 1-type over the smaller model is definable but there exists a tuple of elements of the larger model whose 2-type over the smaller model is not definable.
@article{MT_2005_8_2_a0,
     author = {B. S. Baizhanov},
     title = {Definability of {1-Types} in {Weakly} $o${-Minimal} {Theories}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--38},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2005_8_2_a0/}
}
TY  - JOUR
AU  - B. S. Baizhanov
TI  - Definability of 1-Types in Weakly $o$-Minimal Theories
JO  - Matematičeskie trudy
PY  - 2005
SP  - 3
EP  - 38
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2005_8_2_a0/
LA  - ru
ID  - MT_2005_8_2_a0
ER  - 
%0 Journal Article
%A B. S. Baizhanov
%T Definability of 1-Types in Weakly $o$-Minimal Theories
%J Matematičeskie trudy
%D 2005
%P 3-38
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2005_8_2_a0/
%G ru
%F MT_2005_8_2_a0
B. S. Baizhanov. Definability of 1-Types in Weakly $o$-Minimal Theories. Matematičeskie trudy, Tome 8 (2005) no. 2, pp. 3-38. http://geodesic.mathdoc.fr/item/MT_2005_8_2_a0/

[1] Baizhanov B. S., “Spektralnye voprosy totalno transtsendentnykh teorii konechnogo ranga”, Teoriya modelei i ee prilozheniya, Izd-vo KazGU, Alma-Ata, 1980, 25–44 | MR

[2] Baizhanov B. S., “Obogaschenie $o$-minimalnoi modeli unarnymi vypuklymi predikatami”, Issledovaniya v teorii algebraicheskikh sistem, Izd-vo KarGU, Karaganda, 1995, 3–23

[3] Baizhanov B. S., “Pary modelei i svoistvo NBAM”, Problemy informatiki i upravleniya, Sb. nauch. tr., Gylym, Almaty, 1995, 81–89

[4] Baizhanov B., Verbovskii V., Turekhanova G., “Neortogonalnost 1-tipov v slabo $o$-minimalnykh strukturakh konechnoi glubiny”, Algebra and Model Theory 4, Collection of Papers, eds. A. G. Pinus, K. N. Ponomaryov, Novosibirsk State Technical University, Novosibirsk, 1999, 7–14 | MR

[5] Baizhanov B. S., Classification of One-Types in Weakly $o$-Minimal Theories and Its Corollaries, Preprint, Izd-vo In-ta problem informatiki i upravleniya AN Respubliki Kazakhstan, Almaty, 1996

[6] Baizhanov V. S., “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and Model Theory 2, Collection of Papers, eds. Pinus A. G. and Ponomaryov K. N., Novosibirsk State Technical University, Novosibirsk, 1999, 5–28 | MR | Zbl

[7] Baizhanov B. S., “Expansions of a model of a weakly $o$-minimal theory by a family of convex unary predicates”, J. Symbolic Logic, 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[8] Baldwin J. T., Fundamentals of Stability Theory, Springer-Verlag, Berlin, etc., 1988 | MR

[9] Buechler S., “Pseudoprojective strongly minimal sets are locally projective”, J. Symbolic Logic, 56:4 (1991), 1184–1194 | DOI | MR | Zbl

[10] Chang C. C. and Keisler H. J., Model Theory, North-Holland, Amsterdam, 1973 | Zbl

[11] Dickmann M. A., “Elimination of quantifiers for ordered valuation rings”, Proc. of the Third Easter Model Theory Conf. at Gross Koris, V. 70, Humboldt-Univ., Berlin, 1985, 64–88 | MR | Zbl

[12] van den Dries L., “Remarks on Tarski's problem concerning $(\mathbb R,+,*,\exp)$”, Proc. Logic Colloquium' 82, 1984, 240–266

[13] van den Dries L., “Tarski's problem and Pfaffian functions”, Logic Colloquium' 84, eds. Paris J. V., Wilkie A. J., and Wilmers G. M., North-Holland, Amsterdam, 1986, 59–90

[14] Lachlan A. H., “Dimension and totally transcendental theories of rank 2”, Set Theory and Hierarchy Theory, Mem. Tribute A. Mostowski, Bierutowice 1975, Lecture Notes in Math., 537, eds. Marek W., Srebrny M., and Zarach A., Springer-Verlag, Berlin, 1976, 153–183 | MR

[15] Macpherson D., Marker D., and Steinborn Ch., “Weakly $o$-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352:12 (1993), 5435–5483 | DOI | MR

[16] Marker D., “Omitting types in $o$-minimal theories”, J. Symbolic Logic, 51 (1986), 63–74 | DOI | MR | Zbl

[17] Marker D. and Steinhorn Ch., “Definable types in $o$-minimal theories”, J. Symbolic Logic, 59:1 (1994), 185–198 | DOI | MR | Zbl

[18] Mayer L., “Vaught's conjecture for $o$-minimal theories”, J. Symbolic Logic, 53:1 (1988), 146–159 | DOI | MR | Zbl

[19] Pillay A., “Definability of types, and pairs of $o$-minimal structures”, J. Symbolic Logic, 59:4 (1994), 1400–1409 | DOI | MR | Zbl

[20] Pillay A. and Steinhorn Ch., “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 295 (1986), 565–592 | DOI | MR | Zbl

[21] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl