Variations on the~Wadge Reducibility
Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 135-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Wadge reducibility in the Baire and Cantor spaces is very important in descriptive set theory. We consider the Wadge reducibility in some other topological spaces, in particular, in the $\varphi$-spaces which are topological counterparts of the algebraic directed-complete partial orderings. It turns out that the Wadge reducibility behaves worse in most spaces than in the classical case but there exist interesting examples of spaces with a better behavior as well.
@article{MT_2005_8_1_a4,
     author = {V. L. Selivanov},
     title = {Variations on {the~Wadge} {Reducibility}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {135--175},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2005_8_1_a4/}
}
TY  - JOUR
AU  - V. L. Selivanov
TI  - Variations on the~Wadge Reducibility
JO  - Matematičeskie trudy
PY  - 2005
SP  - 135
EP  - 175
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2005_8_1_a4/
LA  - ru
ID  - MT_2005_8_1_a4
ER  - 
%0 Journal Article
%A V. L. Selivanov
%T Variations on the~Wadge Reducibility
%J Matematičeskie trudy
%D 2005
%P 135-175
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2005_8_1_a4/
%G ru
%F MT_2005_8_1_a4
V. L. Selivanov. Variations on the~Wadge Reducibility. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 135-175. http://geodesic.mathdoc.fr/item/MT_2005_8_1_a4/

[1] Selivanov V. L., “O strukture stepenei nerazreshimosti indeksnykh mnozhestv”, Algebra i logika, 18:4 (1979), 463–480 | MR | Zbl

[2] Selivanov V. L., “O strukture stepenei obobschennykh indeksnykh mnozhestv”, Algebra i logika, 21:4 (1982), 472–491 | MR

[3] Selivanov V. L., “Ob indeksnykh mnozhestvakh v ierarkhii Klini — Mostovskogo”, Tr. IM SOAN SSSR, 2, Nauka, Novosibirsk, 1982, 135–158

[4] Selivanov V. L., “Indeksnye mnozhestva v giperarifmeticheskoi ierarkhii”, Sib. mat. zhurn., 25:3 (1984), 164–181 | MR | Zbl

[5] Selivanov V. L., “Bulevy ierarkhii razbienii nad redutsiruemoi bazoi”, Algebra i logika, 43:1 (2004), 77–109 | MR | Zbl

[6] Selivanov V. L., “Raznostnaya ierarkhiya v $\varphi$-prostranstvakh”, Algebra i logika, 43:4 (2004), 425–444 | MR | Zbl

[7] Selivanov V. L., “O klassifikatsii schetnykh bulevykh termov”, Algebra i logika, 44:2 (2005), 173–197 | MR | Zbl

[8] Bauer A., The Realizability Approach to Computable Analysis and Topology, Ph.D. Thesis, Carnegie Mellon University, Campus Printing, 2000

[9] Duparc J., “Wadge hierarchy and Veblen hierarchy: Part I: Borel sets of finite rank”, J. Symbol Logic, 66:1 (2001), 56–86 | DOI | MR | Zbl

[10] Ershov Yu. L., “Theory of domains and nearby”, Lecture Notes of Computer Science, 735 (1993), 1–7 | DOI | MR

[11] Giertz G., Hoffmann K. H., Keimel K., Lawson J. D., Mislove M. W., and Scott D. S., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003 | MR

[12] Hemmerling A., Approximate Decidability in Euclidean Spaces, Preprint-Reihe Mathematik, N 17, Universitat Greifswald, Greifswald, 2001

[13] Hertling P., Unstetigkeitsgrade von Funktionen in der Effectiven Analysis, Ph.D. Thesis Informatik-Berichte208-11, Fern Universität Hagen, Hagen, 1996

[14] Kechris A. S., Classical Descriptive Set Theory, Springer-Verlag, Berlin, 1995 | MR

[15] Scott D., “Continuous lattices”, Lecture Notes in Math., 274, Springer-Verlag, Berlin, 1972, 97–136 | MR

[16] Selivanov V. L., “Fine hierarchies and Boolean terms”, J. Symbol. Logic, 60 (1995), 289–317 | DOI | MR | Zbl

[17] Tang A., “Chain properties in $P\omega$”, Theoret. Comput. Sci., 9 (1979), 153–172 | DOI | MR | Zbl

[18] Tang A., “Wadge reducibility and Hausdorff difference hierarchy in $P\omega$”, Continuous Lattices, Lecture Notes in Math., 871, Springer-Verlag, Berlin, 1981, 360–371

[19] Wadge W., “Degrees of complexity of subsets of the Baire space”, Notices Amer. Math. Soc., A 714 (1972)

[20] Wadge W., Reducibility and Determinateness in the Baire Space, Ph.D. Thesis, Univ. of California, Berkeley, 1984

[21] Weihrauch K., Computable Analysis, Springer-Verlag, Berlin, 2000 | MR | Zbl

[22] van Wesep R., “Wadge degrees and descriptive set theory”, Lecture Notes in Math., 689, Springer-Verlag, Berlin, 1978, 151–170 | MR