A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk
Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 43-70

Voir la notice de l'article provenant de la source Math-Net.Ru

For the sums $S(n)=X(1)+\dots+X(n)$ of independent identically distributed random variables with zero mean, we determine the first passage time $$ \eta_y=\inf\bigl\{n\ge 1:S(n)\ge y\bigr\} $$ across the level $y\ge 0$ from below to above by the random walk $\bigl\{S(n);\,n=1,2,\dots\bigr\}$. We obtain a local theorem for this random variable, i. e., we find asymptotics of $\mathbb P(\eta_y=n)$ for a fixed level $y\ge 0$ as $n\to\infty$.
@article{MT_2005_8_1_a1,
     author = {A. A. Mogul'skii and B. A. Rogozin},
     title = {A~Local {Theorem} for {the~First} {Hitting} {Time} of {a~Fixed} {Level} by {a~Random} {Walk}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {43--70},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/}
}
TY  - JOUR
AU  - A. A. Mogul'skii
AU  - B. A. Rogozin
TI  - A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk
JO  - Matematičeskie trudy
PY  - 2005
SP  - 43
EP  - 70
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/
LA  - ru
ID  - MT_2005_8_1_a1
ER  - 
%0 Journal Article
%A A. A. Mogul'skii
%A B. A. Rogozin
%T A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk
%J Matematičeskie trudy
%D 2005
%P 43-70
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/
%G ru
%F MT_2005_8_1_a1
A. A. Mogul'skii; B. A. Rogozin. A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 43-70. http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/