A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk
Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 43-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the sums $S(n)=X(1)+\dots+X(n)$ of independent identically distributed random variables with zero mean, we determine the first passage time $$ \eta_y=\inf\bigl\{n\ge 1:S(n)\ge y\bigr\} $$ across the level $y\ge 0$ from below to above by the random walk $\bigl\{S(n);\,n=1,2,\dots\bigr\}$. We obtain a local theorem for this random variable, i. e., we find asymptotics of $\mathbb P(\eta_y=n)$ for a fixed level $y\ge 0$ as $n\to\infty$.
@article{MT_2005_8_1_a1,
     author = {A. A. Mogul'skii and B. A. Rogozin},
     title = {A~Local {Theorem} for {the~First} {Hitting} {Time} of {a~Fixed} {Level} by {a~Random} {Walk}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {43--70},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/}
}
TY  - JOUR
AU  - A. A. Mogul'skii
AU  - B. A. Rogozin
TI  - A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk
JO  - Matematičeskie trudy
PY  - 2005
SP  - 43
EP  - 70
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/
LA  - ru
ID  - MT_2005_8_1_a1
ER  - 
%0 Journal Article
%A A. A. Mogul'skii
%A B. A. Rogozin
%T A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk
%J Matematičeskie trudy
%D 2005
%P 43-70
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/
%G ru
%F MT_2005_8_1_a1
A. A. Mogul'skii; B. A. Rogozin. A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 43-70. http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/

[1] Borovkov A. A., “Predelnye teoremy o raspredelenii maksimuma summ ogranichennykh reshetchatykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 5:2 (1960), 137–171 | MR | Zbl

[2] Borovkov A. A., “O faktorizatsionnykh tozhdestvakh i svoistvakh raspredeleniya supremuma posledovatelnykh summ”, Teoriya veroyatnostei i ee primeneniya, 15:3 (1970), 377–418 | MR | Zbl

[3] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Fizmatgiz, M., 1972

[4] Borovkov A. A., “Ob asimptotike raspredelenii vremen pervogo prokhozhdeniya. I”, Mat. zametki, 75:1 (2004), 24–39 | MR | Zbl

[5] Borovkov A. A., “Ob asimptotike raspredelenii vremen pervogo prokhozhdeniya. II”, Mat. zametki, 75:3 (2004), 350–359 | MR | Zbl

[6] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. I: Lokalnye teoremy”, Mat. trudy, 2:2 (1999), 57–97 | MR

[7] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. II: Integralnaya teorema”, Mat. trudy, 3:1 (2000), 48–118 | MR

[8] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. III: Konstanty v integralnoi i lokalnoi teoremakh”, Mat. trudy, 4:1 (2001), 68–93 | MR | Zbl

[9] Naimark M. A., Normirovannye koltsa, GITTL, M., 1956

[10] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972

[11] Rogozin B. A., “Raspredelenie pervogo lestnichnogo momenta i vysoty i fluktuatsii sluchainogo bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 16:4 (1971), 593–613 | Zbl

[12] Rogozin B. A., “Asimptotika koeffitsientov v teoremakh Levi — Vinera ob absolyutno skhodyaschikhsya trigonometricheskikh ryadakh”, Sib. mat. zhurn., 14:6 (1973), 1304–1312 | MR | Zbl

[13] Rogozin B. A., “Asimptoticheskoe povedenie koeffitsientov funktsii ot stepennykh ryadov i ryadov Fure”, Sib. mat. zhurn., 17:3 (1976), 640–647 | MR | Zbl

[14] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. II, Mir, M., 1967

[15] Doney R. A., “On the asymptotic behavior of the first passage times for transient random walk”, Probab. Theory Related Fields, 81:2 (1989), 239–246 | DOI | MR | Zbl

[16] Stone C., “On local and ratio limit theorems”, Proc. of the 5th Berkeley Symp. Math. Stat. Probab., V. 2, Pt. 2, Univ. of California Press, Berkeley; Los Angeles, 1966, 217–224 | MR