A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk
Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 43-70
Voir la notice de l'article provenant de la source Math-Net.Ru
For the sums $S(n)=X(1)+\dots+X(n)$ of independent identically distributed random variables with zero mean, we determine the first passage time
$$
\eta_y=\inf\bigl\{n\ge 1:S(n)\ge y\bigr\}
$$
across the level $y\ge 0$ from below to above by the random walk $\bigl\{S(n);\,n=1,2,\dots\bigr\}$. We obtain a local theorem for this random variable, i. e., we find asymptotics of $\mathbb P(\eta_y=n)$ for a fixed level $y\ge 0$ as $n\to\infty$.
@article{MT_2005_8_1_a1,
author = {A. A. Mogul'skii and B. A. Rogozin},
title = {A~Local {Theorem} for {the~First} {Hitting} {Time} of {a~Fixed} {Level} by {a~Random} {Walk}},
journal = {Matemati\v{c}eskie trudy},
pages = {43--70},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/}
}
A. A. Mogul'skii; B. A. Rogozin. A~Local Theorem for the~First Hitting Time of a~Fixed Level by a~Random Walk. Matematičeskie trudy, Tome 8 (2005) no. 1, pp. 43-70. http://geodesic.mathdoc.fr/item/MT_2005_8_1_a1/