Geometric Symbol Calculus\break for Pseudodifferential Operators.~I
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 159-206

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection on a manifold allows us to define the full symbol of a pseudodifferential operator in an invariant way. The latter is called the geometric symbol to distinguish it from the coordinate-wise symbol. The traditional calculus is developed for geometric symbols: an expression of the geometric symbol through the coordinate-wise symbol, formulas for the geometric symbol of the product of two operators, and of the dual operator. The work consists of two parts. The first part considers operators on scalar functions. The second part generalizes main results to operators on vector bundles.
@article{MT_2004_7_2_a6,
     author = {V. A. Sharafutdinov},
     title = {Geometric {Symbol} {Calculus\break} for {Pseudodifferential} {Operators.~I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {159--206},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/}
}
TY  - JOUR
AU  - V. A. Sharafutdinov
TI  - Geometric Symbol Calculus\break for Pseudodifferential Operators.~I
JO  - Matematičeskie trudy
PY  - 2004
SP  - 159
EP  - 206
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/
LA  - ru
ID  - MT_2004_7_2_a6
ER  - 
%0 Journal Article
%A V. A. Sharafutdinov
%T Geometric Symbol Calculus\break for Pseudodifferential Operators.~I
%J Matematičeskie trudy
%D 2004
%P 159-206
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/
%G ru
%F MT_2004_7_2_a6
V. A. Sharafutdinov. Geometric Symbol Calculus\break for Pseudodifferential Operators.~I. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 159-206. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/