Geometric Symbol Calculus\break for Pseudodifferential Operators.~I
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 159-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection on a manifold allows us to define the full symbol of a pseudodifferential operator in an invariant way. The latter is called the geometric symbol to distinguish it from the coordinate-wise symbol. The traditional calculus is developed for geometric symbols: an expression of the geometric symbol through the coordinate-wise symbol, formulas for the geometric symbol of the product of two operators, and of the dual operator. The work consists of two parts. The first part considers operators on scalar functions. The second part generalizes main results to operators on vector bundles.
@article{MT_2004_7_2_a6,
     author = {V. A. Sharafutdinov},
     title = {Geometric {Symbol} {Calculus\break} for {Pseudodifferential} {Operators.~I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {159--206},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/}
}
TY  - JOUR
AU  - V. A. Sharafutdinov
TI  - Geometric Symbol Calculus\break for Pseudodifferential Operators.~I
JO  - Matematičeskie trudy
PY  - 2004
SP  - 159
EP  - 206
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/
LA  - ru
ID  - MT_2004_7_2_a6
ER  - 
%0 Journal Article
%A V. A. Sharafutdinov
%T Geometric Symbol Calculus\break for Pseudodifferential Operators.~I
%J Matematičeskie trudy
%D 2004
%P 159-206
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/
%G ru
%F MT_2004_7_2_a6
V. A. Sharafutdinov. Geometric Symbol Calculus\break for Pseudodifferential Operators.~I. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 159-206. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a6/

[1] Eberlein R. V., Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicago, IL, 1996 | MR | Zbl

[2] Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press, Princeton, 1926 | MR | Zbl

[3] Hormander L., Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin; Heidelberg; New York; Tokio, 1983 | MR

[4] Hormander L., Analysis of Linear Partial Differential Operators. III: Pseudo-Differential Operators, Springer-Verlag, Berlin; Heidelberg; New York; Tokio, 1985

[5] Pflaum M. J., “The normal symbol on Riemannian manifolds”, New York J. Math., 4 (1998), 97–125 | MR | Zbl

[6] Safarov Yu. G., “Pseudodifferential operators and linear connections”, Proc. London Math. Soc. (3), 74:2 (1997), 379–416 | DOI | MR | Zbl

[7] Sharafutdinov V. A., Integral Geometry of Tensor Fields, VSP, Utrecht; The Netherlands, 1994 | MR | Zbl

[8] Widom H., “Families of pseudodifferential operators”, Topics in Functional Analysis, eds. Gohberg I. and Kac M., Academic Press, New York, 1978, 345–395 | MR

[9] Widom N., “A complete symbolic calculus for pseudodifferential operators”, Bull. Sci. Math. (2), 104 (1980), 19–63 | MR | Zbl