An~Explicit Variational Formula for the~Monodromy Group
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 126-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the monodromy groups of linearly polymorphic functions on compact Riemann surfaces of genus $g\ge 2$ in connection with standard uniformizations of these surfaces by Kleinian groups. We find necessary and sufficient conditions under which a linearly polymorphic function on a compact Riemann surface gives a standard uniformization of this surface. We study the monodromy mapping $p\colon\mathbf T_gQ\to\mathcal M$, where $\mathbf T_gQ$ is the vector bundle of holomorphic quadratic abelian differentials over the Teichmüller space of compact Riemann surfaces of genus $g$ and $\mathcal M$ is the space of monodromy groups for genus $g$. We prove that $p$ possesses the path lifting property over each space of quasiconformal deformations of the Koebe group of signature $\sigma=(h,s;i_1,\dots,i_m)$ connected with the standard uniformization of a compact Riemann surface of genus $g=|\sigma|$. Moreover, we obtain an explicit variational formula for the monodromy group of a second-order linear differential equation and the first variation for a solution to a Schwartz equation on a compact Riemann surface.
@article{MT_2004_7_2_a5,
     author = {V. V. Chueshev},
     title = {An~Explicit {Variational} {Formula} for {the~Monodromy} {Group}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {126--158},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a5/}
}
TY  - JOUR
AU  - V. V. Chueshev
TI  - An~Explicit Variational Formula for the~Monodromy Group
JO  - Matematičeskie trudy
PY  - 2004
SP  - 126
EP  - 158
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_2_a5/
LA  - ru
ID  - MT_2004_7_2_a5
ER  - 
%0 Journal Article
%A V. V. Chueshev
%T An~Explicit Variational Formula for the~Monodromy Group
%J Matematičeskie trudy
%D 2004
%P 126-158
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_2_a5/
%G ru
%F MT_2004_7_2_a5
V. V. Chueshev. An~Explicit Variational Formula for the~Monodromy Group. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 126-158. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a5/

[1] Alfors L. V., Vere L., Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, Izd-vo inostr. lit., M., 1961

[2] Venkov A. B., “Primery effektivnogo resheniya problemy Rimana — Gilberta o vosstanovlenii differentsialnogo uravneniya po gruppe monodromii v ramkakh teorii avtomorfnykh funktsii”, Zap. nauch. seminarov LOMI, 162, Mat. in-t im. V. A. Steklova, Leningr. otd-nie, 1987, 5–42

[3] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M.–L., 1950

[4] Zograf P. G., Takhtadzhyan L. A., “Ob uniformizatsii rimanovykh poverkhnostei i metrike Veilya — Peterssona na prostranstve Teikhmyullera i Shottki”, Mat. sb., 132:3 (1987), 304–321 | Zbl

[5] Krushkal S. L., Kvazikonformnye otobrazheniya i rimanovy poverkhnosti, Nauka, Novosibirsk, 1975

[6] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo inostr. lit., M., 1960

[7] Forster O., Rimanovy poverkhnosti, Mir, M., 1980

[8] Chueshev V. V., “Prostranstva kompaktnykh rimanovykh poverkhnostei i grupp Kebe”, Sib mat. zhurn., 22:5 (1981), 190–205 | MR | Zbl

[9] Shabat B. V., Vvedenie v kompleksnyi analiz, Chast 2, Nauka, M., 1985

[10] Appell P., “Sur les integrales de fonctions a multiplicateurs et leur application an developpement des fonctions abeliennes en series trigonometriques”, Acta Math., 13:3/4 (1890), 1–174

[11] Appell P., Goursat E., and Fatou P., Théorie des Fonctions Algébriques, Chelsea Publish. Company, New York, 1976 | Zbl

[12] Bers L., “Holomorphic differentials as functions of moduli”, Bull. Amer. Math. Soc., 67:2 (1961), 206–210 | DOI | MR | Zbl

[13] Earle C. J., “On variation of projective structures”, Riemann Surfaces and Related Topics, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, 1981, 87–99 | MR

[14] Grauert H., “Analytische Faserungen über holomorph-vollständigen Räumen”, Math. Ann., 135 (1958), 266–273 | DOI | MR

[15] Gunning R. C., Lectures on Vector Bundles over Riemann Surfaces, Princeton Univ. Press, Princeton, 1967 | MR | Zbl

[16] Gunning R. S., “Special coordinate coverings of Riemann surfaces”, Math. Ann., 170 (1967), 67–86 | DOI | MR | Zbl

[17] Hejhal D. A., “Monodromy groups and linearly polymorphic functions”, Acta Math., 135:1–2 (1975), 1–55 | DOI | MR | Zbl

[18] Hejhal D. A., “The variational theory of linearly polymorphic functions”, J. Analyse Math., 30 (1976), 215–264 | DOI | MR | Zbl

[19] Hejhal D. A., “Kernel functions, Poincaré series, and LVA”, Contemporary Mathematics, 256, Amer. Math. Soc., Providence, RI, 2000, 173–201 | MR | Zbl

[20] Kapovich M. E., Hyperbolic Manifolds and Discrete Groups, Progress in Mathematics, 183, Birkhäuser, Boston, MA, 2001 | MR | Zbl

[21] Kra I., “Deformation of Fuchsian groups”, Duke Math. J., 36 (1969), 537–546 | DOI | MR | Zbl

[22] Kra I., Maskit B., “Remarks on projective structures”, Riemann Surfaces and Related Topics, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, 1981, 343–359 | MR

[23] Maskit B., “Self-maps of Kleinian groups”, Amer. J. Math., 93 (1971), 840–856 | DOI | MR | Zbl

[24] Maskit B., “Uniformizations of Riemann surfaces”, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Stud., 79, Acad. Press, New York, 1974, 293–312 | MR

[25] Maskit B., “On the classification of Kleinian groups: I. Koebe groups”, Acta Math., 135:3–4 (1975), 249–270 | DOI | MR | Zbl

[26] Maskit B., “On the classification of Kleinian groups: II. Signatures”, Acta Math., 138:1–2 (1977), 17–42 | DOI | MR | Zbl