Dual Covers of the~Greatest Element of the~Rogers Semilattice
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 98-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we study the algebraic structure of the Rogers semilattices of $\Sigma_n^0$-computable numberings for $n\ge2$. We prove that, under some sufficient conditions, the greatest element of each of these semilattices can be a limit element (i. e., cannot have dual covers).
@article{MT_2004_7_2_a3,
     author = {S. Yu. Podzorov},
     title = {Dual {Covers} of {the~Greatest} {Element} of {the~Rogers} {Semilattice}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/}
}
TY  - JOUR
AU  - S. Yu. Podzorov
TI  - Dual Covers of the~Greatest Element of the~Rogers Semilattice
JO  - Matematičeskie trudy
PY  - 2004
SP  - 98
EP  - 108
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/
LA  - ru
ID  - MT_2004_7_2_a3
ER  - 
%0 Journal Article
%A S. Yu. Podzorov
%T Dual Covers of the~Greatest Element of the~Rogers Semilattice
%J Matematičeskie trudy
%D 2004
%P 98-108
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/
%G ru
%F MT_2004_7_2_a3
S. Yu. Podzorov. Dual Covers of the~Greatest Element of the~Rogers Semilattice. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/

[1] Badaev S. A., Podzorov S. Yu., “Minimalnye nakrytiya v polureshetkakh Rodzhersa $\Sigma_n^0$-vychislimykh numeratsii”, Sib. mat. zhurn., 43:4 (2002), 769–778 | MR | Zbl

[2] Goncharov S. S., Sorbi A., “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[3] Degtev A. N., Rekursivno perechislimye mnozhestva i svodimosti tablichnogo tipa, Nauka, Fizmatlit, M., 1998

[4] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977

[5] Podzorov S. Yu., “O lokalnom stroenii polureshetok Rodzhersa $\Sigma_n^0$-vychislimykh numeratsii”, Algebra i logika, 44:2 (2005), 148–172 | MR | Zbl

[6] Rodzhers X., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972

[7] Coap P. I., Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matematicheskoe obschestvo, Kazan, 2000

[8] Khutoretskii A. B., “O moschnosti verkhnei polu reshetki vychislimykh numeratsii”, Algebra i logika, 10:5 (1971), 561–569 | MR | Zbl

[9] Badaev S. A., Goncharov S. S., and Sorbi A., “Completeness and universality of arithmetical numberings”, Computability and Models, Kluwer Academic Publishers, Dordrecht, etc., 2003, 11–44 | MR

[10] Badaev S. A., Goncharov S. S., Podzorov S. Yu., and Sorbi A., “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and Models, Kluwer Academic Publishers, Dordrecht, etc., 2003, 45–77 | MR

[11] Badaev S. A., Goncharov S. S., and Sorbi A., “Isomorphism types and theories of Rogers semilattices of arithmetical numberings”, Computability and Models, Kluwer Academic Publishers, Dordrecht, etc., 2003, 79–91 | MR

[12] Lachlan A. H., “Two theorems on many-one degrees of recursively enumerable sets”, Algebra i logika, 11:2 (1972), 216–229 | MR | Zbl