Dual Covers of the~Greatest Element of the~Rogers Semilattice
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 98-108
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article, we study the algebraic structure of the Rogers semilattices of $\Sigma_n^0$-computable numberings for $n\ge2$. We prove that, under some sufficient conditions, the greatest element of each of these semilattices can be a limit element (i. e., cannot have dual covers).
@article{MT_2004_7_2_a3,
author = {S. Yu. Podzorov},
title = {Dual {Covers} of {the~Greatest} {Element} of {the~Rogers} {Semilattice}},
journal = {Matemati\v{c}eskie trudy},
pages = {98--108},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/}
}
S. Yu. Podzorov. Dual Covers of the~Greatest Element of the~Rogers Semilattice. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/