Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2004_7_2_a3, author = {S. Yu. Podzorov}, title = {Dual {Covers} of {the~Greatest} {Element} of {the~Rogers} {Semilattice}}, journal = {Matemati\v{c}eskie trudy}, pages = {98--108}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/} }
S. Yu. Podzorov. Dual Covers of the~Greatest Element of the~Rogers Semilattice. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/
[1] Badaev S. A., Podzorov S. Yu., “Minimalnye nakrytiya v polureshetkakh Rodzhersa $\Sigma_n^0$-vychislimykh numeratsii”, Sib. mat. zhurn., 43:4 (2002), 769–778 | MR | Zbl
[2] Goncharov S. S., Sorbi A., “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[3] Degtev A. N., Rekursivno perechislimye mnozhestva i svodimosti tablichnogo tipa, Nauka, Fizmatlit, M., 1998
[4] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977
[5] Podzorov S. Yu., “O lokalnom stroenii polureshetok Rodzhersa $\Sigma_n^0$-vychislimykh numeratsii”, Algebra i logika, 44:2 (2005), 148–172 | MR | Zbl
[6] Rodzhers X., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972
[7] Coap P. I., Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matematicheskoe obschestvo, Kazan, 2000
[8] Khutoretskii A. B., “O moschnosti verkhnei polu reshetki vychislimykh numeratsii”, Algebra i logika, 10:5 (1971), 561–569 | MR | Zbl
[9] Badaev S. A., Goncharov S. S., and Sorbi A., “Completeness and universality of arithmetical numberings”, Computability and Models, Kluwer Academic Publishers, Dordrecht, etc., 2003, 11–44 | MR
[10] Badaev S. A., Goncharov S. S., Podzorov S. Yu., and Sorbi A., “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and Models, Kluwer Academic Publishers, Dordrecht, etc., 2003, 45–77 | MR
[11] Badaev S. A., Goncharov S. S., and Sorbi A., “Isomorphism types and theories of Rogers semilattices of arithmetical numberings”, Computability and Models, Kluwer Academic Publishers, Dordrecht, etc., 2003, 79–91 | MR
[12] Lachlan A. H., “Two theorems on many-one degrees of recursively enumerable sets”, Algebra i logika, 11:2 (1972), 216–229 | MR | Zbl