Dual Covers of the~Greatest Element of the~Rogers Semilattice
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 98-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we study the algebraic structure of the Rogers semilattices of $\Sigma_n^0$-computable numberings for $n\ge2$. We prove that, under some sufficient conditions, the greatest element of each of these semilattices can be a limit element (i. e., cannot have dual covers).
@article{MT_2004_7_2_a3,
     author = {S. Yu. Podzorov},
     title = {Dual {Covers} of {the~Greatest} {Element} of {the~Rogers} {Semilattice}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/}
}
TY  - JOUR
AU  - S. Yu. Podzorov
TI  - Dual Covers of the~Greatest Element of the~Rogers Semilattice
JO  - Matematičeskie trudy
PY  - 2004
SP  - 98
EP  - 108
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/
LA  - ru
ID  - MT_2004_7_2_a3
ER  - 
%0 Journal Article
%A S. Yu. Podzorov
%T Dual Covers of the~Greatest Element of the~Rogers Semilattice
%J Matematičeskie trudy
%D 2004
%P 98-108
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/
%G ru
%F MT_2004_7_2_a3
S. Yu. Podzorov. Dual Covers of the~Greatest Element of the~Rogers Semilattice. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 98-108. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a3/