Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2004_7_2_a0, author = {Yu. S. Volkov}, title = {Totally {Positive} {Matrices} in the {Methods} of {Constructing} {Interpolation} {Splines} of {Odd} {Degree}}, journal = {Matemati\v{c}eskie trudy}, pages = {3--34}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a0/} }
Yu. S. Volkov. Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 3-34. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a0/
[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972
[2] de Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985
[3] Volkov Yu. S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Priblizhenie splainami, Vychislitelnye sistemy, 106, IM SO AN SSSR, Novosibirsk, 1984, 41–56
[4] Volkov Yu. S., “Otsenki chisla obuslovlennosti 5-splainovoi kollokatsionnoi matritsy”, Interpolyatsiya i approksimatsiya splainami, Vychislitelnye sistemy, 147, IM SO RAN, Novosibirsk, 1992, 3–10
[5] Volkov Yu. S., “O postroenii interpolyatsionnykh polinomialnykh splainov”, Splain-funktsii i ikh prilozheniya, Vychislitelnye sistemy, 159, IM SO RAN, Novosibirsk, 1997, 3–18
[6] Volkov Yu. S., “Interpolyatsiya splainami pyatoi stepeni”, Tr. mezhdunar. konf. po vychisl. matem. (MKVM-2004), Chast I, eds. G. A. Mikhailov, V. P. Ilin, Yu. M. Laevskii, IVMiMG SO RAN, Novosibirsk, 2004, 92–97
[7] Volkov Yu. S., “Novyi sposob postroeniya interpolyatsionnykh kubicheskikh splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 231–241 | MR | Zbl
[8] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.; L., 1950
[9] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980
[10] Shadrin A. Yu., “O priblizhenii funktsii interpolyatsionnymi splainami, zadannymi na neravnomernykh setkakh”, Mat. sb., 181:9 (1990), 1236–1255
[11] de Boor S., “On the convergence of odd-degree spline interpolation”, J. Approx. Theory, 1:4 (1968), 452–463 | DOI | MR | Zbl
[12] de Boor C., “On bounding spline interpolation”, J. Approx. Theory, 14:3 (1975), 191–203 | DOI | MR | Zbl
[13] de Boor C., “Odd-degree spline interpolation at a biinfinite knot sequence”, Approximation Theory, Proc. Int. Colloq. (Bonn, 1976), Lecture Notes Math., 556, eds. R. Schaback and K. Scherer, Springer, Heidelberg, 1976, 30–53 | MR
[14] de Boor C., “On a max-norm bound for the least-squares spline approximant”, Approximation and Function Spaces, Proc. Int. Conf. (Gdańsk, 1979), ed. C. Ciesielski, North-Holland, Amsterdam; New York, 1981, 163–175 | MR
[15] de Boor C., Pinkus A., “Backward error analysis for totally positive linear systems”, Numer. Math., 27:4 (1977), 485–490 | DOI | MR | Zbl
[16] de Boor C., Lyche T., Schumaker L. L., “On calculating with $B$-splines. II. Integration”, Numerische Methoden der Approximationstheorie, Bd 3, Internat. Ser. Numer. Math., 30, eds. L. Collatz, G. Meinardus, and H. Werner, Birkhäuser, Basel, 1976, 123–146 | MR
[17] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl
[18] Karlin S., Total Positivity, V. 1, Stanford Univ. Press, Stanford, 1968 | MR
[19] Shadrin A. Yu., “Convergence of quintic spline interpolants in terms of a local mesh ratio”, Bulletin of the Novosibirsk Computing Center, Numerical Analysis, 1, NCC Pablisher, Novosibirsk, 1993, 87–95
[20] Shadrin A. Yu., “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl