Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree
Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 3-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is considered of constructing the complete interpolation spline of degree $2n-1$ by calculating the coefficients of the decomposition of a derivative of the spline in the normalized $B$\@splines of the corresponding degree. It is demonstrated that the construction reduces to solving a system of equations with a totally positive band matrix. Some practical methods are discussed of calculating the entries of the matrix of the system. The possibility is studied of estimating the condition number of totally positive matrices. A bound is found for the condition number of the system of equations for constructing a quintic spline via the coefficients of the decomposition of the second derivative in the $B$-splines of degree three which is independent of the mesh; this guarantees stable calculation of the quintic spline. Uniform convergence is established of the second derivative of the quintic spline to the second derivative of the interpolant function for twice differentiable functions.
@article{MT_2004_7_2_a0,
     author = {Yu. S. Volkov},
     title = {Totally {Positive} {Matrices} in the {Methods} of {Constructing} {Interpolation} {Splines} of {Odd} {Degree}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--34},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_2_a0/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree
JO  - Matematičeskie trudy
PY  - 2004
SP  - 3
EP  - 34
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_2_a0/
LA  - ru
ID  - MT_2004_7_2_a0
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree
%J Matematičeskie trudy
%D 2004
%P 3-34
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_2_a0/
%G ru
%F MT_2004_7_2_a0
Yu. S. Volkov. Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree. Matematičeskie trudy, Tome 7 (2004) no. 2, pp. 3-34. http://geodesic.mathdoc.fr/item/MT_2004_7_2_a0/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972

[2] de Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985

[3] Volkov Yu. S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Priblizhenie splainami, Vychislitelnye sistemy, 106, IM SO AN SSSR, Novosibirsk, 1984, 41–56

[4] Volkov Yu. S., “Otsenki chisla obuslovlennosti 5-splainovoi kollokatsionnoi matritsy”, Interpolyatsiya i approksimatsiya splainami, Vychislitelnye sistemy, 147, IM SO RAN, Novosibirsk, 1992, 3–10

[5] Volkov Yu. S., “O postroenii interpolyatsionnykh polinomialnykh splainov”, Splain-funktsii i ikh prilozheniya, Vychislitelnye sistemy, 159, IM SO RAN, Novosibirsk, 1997, 3–18

[6] Volkov Yu. S., “Interpolyatsiya splainami pyatoi stepeni”, Tr. mezhdunar. konf. po vychisl. matem. (MKVM-2004), Chast I, eds. G. A. Mikhailov, V. P. Ilin, Yu. M. Laevskii, IVMiMG SO RAN, Novosibirsk, 2004, 92–97

[7] Volkov Yu. S., “Novyi sposob postroeniya interpolyatsionnykh kubicheskikh splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 231–241 | MR | Zbl

[8] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.; L., 1950

[9] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980

[10] Shadrin A. Yu., “O priblizhenii funktsii interpolyatsionnymi splainami, zadannymi na neravnomernykh setkakh”, Mat. sb., 181:9 (1990), 1236–1255

[11] de Boor S., “On the convergence of odd-degree spline interpolation”, J. Approx. Theory, 1:4 (1968), 452–463 | DOI | MR | Zbl

[12] de Boor C., “On bounding spline interpolation”, J. Approx. Theory, 14:3 (1975), 191–203 | DOI | MR | Zbl

[13] de Boor C., “Odd-degree spline interpolation at a biinfinite knot sequence”, Approximation Theory, Proc. Int. Colloq. (Bonn, 1976), Lecture Notes Math., 556, eds. R. Schaback and K. Scherer, Springer, Heidelberg, 1976, 30–53 | MR

[14] de Boor C., “On a max-norm bound for the least-squares spline approximant”, Approximation and Function Spaces, Proc. Int. Conf. (Gdańsk, 1979), ed. C. Ciesielski, North-Holland, Amsterdam; New York, 1981, 163–175 | MR

[15] de Boor C., Pinkus A., “Backward error analysis for totally positive linear systems”, Numer. Math., 27:4 (1977), 485–490 | DOI | MR | Zbl

[16] de Boor C., Lyche T., Schumaker L. L., “On calculating with $B$-splines. II. Integration”, Numerische Methoden der Approximationstheorie, Bd 3, Internat. Ser. Numer. Math., 30, eds. L. Collatz, G. Meinardus, and H. Werner, Birkhäuser, Basel, 1976, 123–146 | MR

[17] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl

[18] Karlin S., Total Positivity, V. 1, Stanford Univ. Press, Stanford, 1968 | MR

[19] Shadrin A. Yu., “Convergence of quintic spline interpolants in terms of a local mesh ratio”, Bulletin of the Novosibirsk Computing Center, Numerical Analysis, 1, NCC Pablisher, Novosibirsk, 1993, 87–95

[20] Shadrin A. Yu., “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl