The \'Curgus Condition in Indefinite Sturm--Liouville Problems
Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 153-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite signed measure $\mu$ on $(-1,1)$ changing its sign at zero, we study the Riesz basis property in the space $L_{2,|\mu|}$ of generalized eigenfunctions of the spectral problem $-u''(x)dx=\lambda u(x)d\mu(x)$, $-1$, $u(-1)=u(1)=0$. Primarily, our approach is based on the Ćurgus criterion. We present a criterion for the basis property in the case of an odd measure and sufficient conditions (in terms of $\mu$) known so far for a measure absolutely continuous with respect to the Lebesgue measure whose support is the whole interval. We prove the Riesz basis property for a degenerate discrete measure of a special form and a new necessary condition for this property. For a dense embedding $V\subset H=H'$ of a reflexive Banach space $V$ into a Hilbert space $H$ and a symmetric unitary (in $H$) operator $J$, we consider the interpolation equality $\bigl(V,(JV)'\bigr)_{1/2,2}=H$ applicable to nonlinear evolutionary equations of mixed type. We also exhibit conditions ensuring this equality and generalizing sufficient conditions for the basis property.
@article{MT_2004_7_1_a5,
     author = {A. I. Parfenov},
     title = {The {\'Curgus} {Condition} in {Indefinite} {Sturm--Liouville} {Problems}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {153--188},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_1_a5/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - The \'Curgus Condition in Indefinite Sturm--Liouville Problems
JO  - Matematičeskie trudy
PY  - 2004
SP  - 153
EP  - 188
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_1_a5/
LA  - ru
ID  - MT_2004_7_1_a5
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T The \'Curgus Condition in Indefinite Sturm--Liouville Problems
%J Matematičeskie trudy
%D 2004
%P 153-188
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_1_a5/
%G ru
%F MT_2004_7_1_a5
A. I. Parfenov. The \'Curgus Condition in Indefinite Sturm--Liouville Problems. Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 153-188. http://geodesic.mathdoc.fr/item/MT_2004_7_1_a5/

[1] Azizov T. Ya., Iokhvidov P. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986

[2] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[3] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968

[5] Lione Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Editorial URSS, M., 2002

[6] Parfenov A. I., “Ob odnom kriterii vlozheniya interpolyatsionnykh prostranstv i ego prilozhenii k indefinitnym spektralnym zadacham”, Sib. mat. zhurn., 44:4 (2003), 810–819 | MR | Zbl

[7] Pyatkov S. G., “Nekotorye svoistva sobstvennykh funktsii lineinykh puchkov”, Sib. mat. zhurn., 30:4 (1989), 111–124 | MR | Zbl

[8] Pyatkov S. G., “Indefinitnye ellipticheskie spektralnye zadachi”, Sib. mat. zhurn., 39:2 (1998), 409–426 | MR | Zbl

[9] Tribel X., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[10] Abasheeva N. L., Pyatkov S. G., “Counterexamples in indefinite Sturm–Liouville problems”, Siberian Adv. Math., 7:4 (1997), 1–8 | MR | Zbl

[11] Auscher P., Hofmann S., Lacey M., McIntosh A., Tchamitchian Ph., “The solution of the Kato square root problem for second order elliptic operators on $\mathbb R^n$”, Ann. Math., 156:2 (2002), 633–654 | DOI | MR | Zbl

[12] Auscher P., McIntosh A., Nahmod A., “Holomorphic functional calculi of operators, quadratic estimates and interpolation”, Indiana Univ. Math. J., 46:2 (1997), 375–403 | DOI | MR | Zbl

[13] Beals R., “Indefinite Sturm–Liouville problems and half-range completeness”, J. Differential Equations, 56:3 (1985), 391–407 | DOI | MR | Zbl

[14] Ćurgus V., “On the regularity of the critical point infinity of definitizable operators”, Integral Equations Operator Theory, 8:4 (1985), 462–488 | DOI | MR

[15] Ćurgus V., Najman B., “A Krein space approach to elliptic eigenvalue problems with indefinite weights”, Differential Integral Equations, 7:5, 6 (1994), 1241–1252 | MR | Zbl

[16] Fleige A., Spectral Theory of Indefinite Krein–Feller Differential Operators, Mathematical Research, 98, Akademie Verlag, Berlin, 1996 | MR | Zbl

[17] Grisvard P., “An approach to the singular solutions of elliptic problems via the theory of differential equations in Banach spaces”, Differential Equations in Banach Spaces, Lecture Notes in Math., 1223, Springer-Verlag, Berlin; New York, 1986, 137–155 | MR

[18] Kato T., “A generalization of the Heinz inequality”, Proc. Japan Acad., 37:6 (1961), 305–308 | DOI | MR | Zbl

[19] Kato T., “Fractional powers of dissipative operators”, J. Math. Soc. Japan, 13:3 (1961), 246–274 | MR | Zbl

[20] McIntosh A., “On the comparability of $A^{1/2}$ and $A^{*1/2}$”, Proc. Amer. Math. Soc., 32:2 (1972), 430–434 | DOI | MR | Zbl

[21] Volkmer H., “Sturm–Liouville problems with indefinite weights and Everitt's inequality”, Proc. Roy. Soc. Edinburgh Sect. A, 126:5 (1996), 1097–1112 | MR | Zbl

[22] Yagi A., “Coincidence entre des espaces d'interpolation et des domaines de puissances fractionaires d'operateurs”, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 173–176 | MR | Zbl