Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~II
Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 13-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the mappings inducing a bounded operator of Lebesgue or Sobolev spaces by change of variable and the properties of the operator of extension of functions in Sobolev classes beyond the domain of definition.
@article{MT_2004_7_1_a1,
     author = {S. K. Vodop'yanov and A. D.-O. Ukhlov},
     title = {Set {Functions} and {Their} {Applications} in {the~Theory} of {Lebesgue} and {Sobolev} {Spaces.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {13--49},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2004_7_1_a1/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
AU  - A. D.-O. Ukhlov
TI  - Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~II
JO  - Matematičeskie trudy
PY  - 2004
SP  - 13
EP  - 49
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2004_7_1_a1/
LA  - ru
ID  - MT_2004_7_1_a1
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%A A. D.-O. Ukhlov
%T Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~II
%J Matematičeskie trudy
%D 2004
%P 13-49
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2004_7_1_a1/
%G ru
%F MT_2004_7_1_a1
S. K. Vodop'yanov; A. D.-O. Ukhlov. Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~II. Matematičeskie trudy, Tome 7 (2004) no. 1, pp. 13-49. http://geodesic.mathdoc.fr/item/MT_2004_7_1_a1/

[1] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, M., 1948

[2] Burenkov V. I., Fain V. L., “O prodolzhenii funktsii iz anizotropnykh prostranstv s sokhraneniem klassa”, Dokl. AN SSSR, 228:3 (1976), 525–528 | MR | Zbl

[3] Vodopyanov S. K., “Geometricheskie svoistva otobrazhenii i oblastei. Otsenki snizu normy operatora prodolzheniya”, Issledovaniya po geometrii i matematicheskomu analizu, Tr. IM SO AN SSSR, 7, Nauka, Novosibirsk, 1987, 70–101 | MR

[4] Vodopyanov S. K., Formula Teilora i funktsionalnye prostranstva, Izd-vo Novosibirskogo un-ta, Novosibirsk, 1988

[5] Vodopyanov S. K., “$L_p$-teoriya potentsiala i kvazikonformnye otobrazheniya na odnorodnykh gruppakh”, Sovremennye problemy geometrii i analiza, ed. S. S. Kutateladze, Nauka, Novosibirsk, 1989, 45–89

[6] Vodopyanov S. K., “Otobrazheniya odnorodnykh grupp i vlozheniya funktsionalnykh prostranstv”, Sib. mat. zhurn., 30:5 (1989), 25–41 | MR | Zbl

[7] Vodopyanov S. K., Geometricheskie aspekty prostranstv obobschenno-differentsiruemykh funktsii, Dis. d-ra fiz.-mat. nauk, Institut matematiki im. S. L. Soboleva, Novosibirsk, 1992

[8] Vodopyanov S. K., “Kvazikonformnye otobrazheniya na gruppakh Karno”, Dokl. RAN, 347:4 (1996), 439–442 | MR | Zbl

[9] Vodopyanov S. K., “Monotonnye funktsii i kvazikonformnye otobrazheniya na gruppakh Karno”, Sib. mat. zhurn., 37:6 (1996), 1269–1295 | MR | Zbl

[10] Vodopyanov S. K., “$\mathcal P$-differentiability on Carnot groups in different topologies and related topics”, Trudy po analizu i geometrii, ed. S. K. Vodopyanov, Izd-vo In-ta matematiki, Novosibirsk, 2000, 603–670 | MR

[11] Vodopyanov S. K., “Topologicheskie i geometricheskie svoistva otobrazhenii klassov Soboleva s summiruemym yakobianom. I”, Sib. mat. zhurn., 41:1 (2000), 23–48 | MR | Zbl

[12] Vodopyanov S. K., “O differentsiruemosti otobrazhenii klassov Soboleva na gruppe Karno”, Mat. sb., 194:6 (2003), 67–86 | Zbl

[13] Vodopyanov S. K., Goldshtein V. M., Latfullin T. G., “Kriterii prodolzheniya funktsii klassa $L_2^1$ iz neogranichennykh ploskikh oblastei”, Sib. mat. zhurn., 20:2 (1979), 416–419 | MR | Zbl

[14] Vodopyanov S. K., Goldshtein V. M., Reshetnyak Yu. G., “O geometricheskikh svoistvakh funktsii s pervymi obobschennymi proizvodnymi”, Uspekhi mat. nauk, 34:1 (1979), 17–62 | MR

[15] Vodopyanov S. K., Greshnov A. V., “O prodolzhenii funktsii ogranichennoi srednei ostsillyatsii na prostranstvakh odnorodnogo tipa s vnutrennei metrikoi”, Sib. mat. zhurn., 36:5 (1995), 1015–1048 | Zbl

[16] Vodopyanov S. K., Chernikov V. M., “Prostranstva Soboleva i gipoellipticheskie uravneniya”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 7–62

[17] Vodopyanov S. K., Ukhlov A. D., “Approksimativno differentsiruemye preobrazovaniya i zamena peremennykh na nilpotentnykh gruppakh”, Sib. mat. zhurn., 37:1 (1996), 70–89 | MR | Zbl

[18] Vodopyanov S. K., Ukhlov A. D., “Prostranstva Soboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zhurn., 39:4 (1998), 776–795 | MR | Zbl

[19] Vodopyanov S. K , Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Lebega i differentsiruemost kvaziadditivnykh funktsii mnozhestva”, Vladikavkazskii mat. zhurn., 4:1 (2002), 11–33

[20] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Dokl. RAN, 386:6 (2002), 730–734 | Zbl

[21] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Izv. vuzov. Matematika, 2002, no. 10 (485), 11–33

[22] Vodopyanov S. K., Ukhlov A. D., “Funktsii mnozhestva i ikh prilozheniya v teorii prostranstv Lebega i Soboleva. I”, Mat. trudy, 6:2 (2003), 14–65 | MR

[23] Greshnov A. V., “Prodolzhenie differentsiruemykh funktsii za granitsu oblasti opredeleniya na gruppakh Karno”, Prostranstva Soboleva i smezhnye voprosy analiza, Tr. In-ta matematiki SO RAN, 31, Izd-vo In-ta matematiki, Novosibirsk, 1996, 161–186

[24] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978

[25] Mazya V. G., “O slabykh resheniyakh zadach Dirikhle i Neimana”, Tr. Mosk. mat. o-va, 20, 1969, 137–172 | MR | Zbl

[26] Ukhlov A. D., “Otsenki snizu normy operatora prodolzheniya differentsiruemykh funktsii iz oblastei grupp Karno”, Sb. nauchn. tr. NII KT KhGTU, 8, Izd-vo Khabarovskogo gos. tekh. un-ta, Khabarovsk, 1999, 33–44

[27] Ukhlov A. D., Prostranstva Soboleva i differentsialnye svoistva gomeomorfizmov na gruppakh Karno, Preprint, No 18, IPM DVO RAN, Khabarovsk, 2000

[28] Kherron D. A., Koskela P., “Oblasti Puankare i kvazikonformnye otobrazheniya”, Sib. mat. zhurn., 36:6 (1995), 1416–1434 | MR | Zbl

[29] Shvartsman P. A., Teoremy prodolzheniya s sokhraneniem lokalno-polinomialnykh priblizhenii, Dep. v VINITI 04.09.86, No 6487-V86, Izd-vo Yaroslavskogo gos. un-ta, Yaroslavl, 1986

[30] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl

[31] Capogna L., Garofalo N., “Non-tangentially accessible domains for Carnot–Carathéodory metrics and a Fatou type theorem”, C. R. Acad. Sci. Paris. Sér. I. Math., 321:12 (1995), 1565–1570 | MR | Zbl

[32] Folland G. B., “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13:2 (1975), 161–208 | DOI | MR

[33] Gol'dshteĭn V., Gurov L., “Applications of change of variables operators for exact embedding theorems”, Integral Equations Operator Theory, 19:1 (1994), 1–24 | DOI | MR

[34] Hajłasz P., Koskela P., Sobolev met Poincare, Mem. Amer. Math. Soc., 688, 2000 | MR | Zbl

[35] Jones P., “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math., 147 (1981), 71–88 | DOI | MR | Zbl