Boundary Value Problems for Some Classes of Singular Parabolic Equations
Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 144-208
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the question of solvability of boundary value problems for the parabolic equation
$$
Mu=g(x,t)u_t+L(x,t,D_x)u=f(x,t), \quad (x,t)\in Q=G\times (0,T) \quad (T\le\infty),
$$
where $L$ is an elliptic operator in the space variables of order $2m$ defined in a bounded domain $G\subset\mathbb R^n$. We assume that the operator $L$ is coercive and the corresponding boundary value problem $Lu=f$, $B_ju\big|_{\partial G}=0$ admits a variational statement. The function $g(x,t)$ is nonsmooth in $x$ and can change its sign in $Q$.
@article{MT_2003_6_2_a5,
author = {S. G. Pyatkov},
title = {Boundary {Value} {Problems} for {Some} {Classes} of {Singular} {Parabolic} {Equations}},
journal = {Matemati\v{c}eskie trudy},
pages = {144--208},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a5/}
}
S. G. Pyatkov. Boundary Value Problems for Some Classes of Singular Parabolic Equations. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 144-208. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a5/