Boundary Value Problems for Some Classes of Singular Parabolic Equations
Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 144-208

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of solvability of boundary value problems for the parabolic equation $$ Mu=g(x,t)u_t+L(x,t,D_x)u=f(x,t), \quad (x,t)\in Q=G\times (0,T) \quad (T\le\infty), $$ where $L$ is an elliptic operator in the space variables of order $2m$ defined in a bounded domain $G\subset\mathbb R^n$. We assume that the operator $L$ is coercive and the corresponding boundary value problem $Lu=f$, $B_ju\big|_{\partial G}=0$ admits a variational statement. The function $g(x,t)$ is nonsmooth in $x$ and can change its sign in $Q$.
@article{MT_2003_6_2_a5,
     author = {S. G. Pyatkov},
     title = {Boundary {Value} {Problems} for {Some} {Classes} of {Singular} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {144--208},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a5/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Boundary Value Problems for Some Classes of Singular Parabolic Equations
JO  - Matematičeskie trudy
PY  - 2003
SP  - 144
EP  - 208
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_2_a5/
LA  - ru
ID  - MT_2003_6_2_a5
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Boundary Value Problems for Some Classes of Singular Parabolic Equations
%J Matematičeskie trudy
%D 2003
%P 144-208
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_2_a5/
%G ru
%F MT_2003_6_2_a5
S. G. Pyatkov. Boundary Value Problems for Some Classes of Singular Parabolic Equations. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 144-208. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a5/