One-dimensional Asymptotically Homogeneous Markov Chains: Cram\'er Transform and Large Deviation Probabilities
Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 102-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a time-homogeneous ergodic Markov chain $\{X_n\}$ that takes values on the real line and has asymptotically homogeneous increments at infinity. We assume that the “limit jump” $\xi$ of $\{X_n\}$ has negative mean and satisfies the Cramér condition, i.e., the equation $\Bbb E\,e^{\beta\xi}=1$ has positive solution $\beta$. The asymptotic behavior of the probability $\mathbb P\{X_n>x\}$ is studied as $n\to\infty$ and $x\to\infty$. In particular, we distinguish the ranges of time $n$ where this probability is asymptotically equivalent to the tail of a stationary distribution.
@article{MT_2003_6_2_a4,
     author = {D. A. Korshunov},
     title = {One-dimensional {Asymptotically} {Homogeneous} {Markov} {Chains:} {Cram\'er} {Transform} and {Large} {Deviation} {Probabilities}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {102--143},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a4/}
}
TY  - JOUR
AU  - D. A. Korshunov
TI  - One-dimensional Asymptotically Homogeneous Markov Chains: Cram\'er Transform and Large Deviation Probabilities
JO  - Matematičeskie trudy
PY  - 2003
SP  - 102
EP  - 143
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_2_a4/
LA  - ru
ID  - MT_2003_6_2_a4
ER  - 
%0 Journal Article
%A D. A. Korshunov
%T One-dimensional Asymptotically Homogeneous Markov Chains: Cram\'er Transform and Large Deviation Probabilities
%J Matematičeskie trudy
%D 2003
%P 102-143
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_2_a4/
%G ru
%F MT_2003_6_2_a4
D. A. Korshunov. One-dimensional Asymptotically Homogeneous Markov Chains: Cram\'er Transform and Large Deviation Probabilities. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 102-143. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a4/

[1] Borovkov A. A., “Novye predelnye teoremy v granichnykh zadachakh dlya summ nezavisimykh slagaemykh”, Sib. mat. zhurn., 3:5 (1962), 645–694 | MR | Zbl

[2] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M., 1999

[3] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. I: Statsionarnye raspredeleniya”, Teoriya veroyatnostei i ee primeneniya, 41:1 (1996), 3–30

[4] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. II: Dostatsionarnye raspredeleniya v eksponentsialnom sluchae”, Teoriya veroyatnostei i ee primeneniya, 45:3 (2000), 437–468 | MR | Zbl

[5] Borovkov A. A., Foss S. G., “Otsenki dlya pereskoka sluchainogo bluzhdaniya cherez proizvolnuyu granitsu i ikh primeneniya”, Teoriya veroyatnostei i ee primeneniya, 44:2 (1999), 249–277 | Zbl

[6] Korshunov D. A., “Predelnye teoremy dlya obschikh tsepei Markova”, Sib. mat. zhurn., 42:2 (2001), 354–371 | MR | Zbl

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1984

[8] Cramér N., Collective Risk Theory: A Survey of Theory from the Point of View of the Theory of Stochastic Processes, Scandia Insurance Company, Stockholm, 1955 | MR

[9] Karlin S., Taylor H. M., A First Course in Stochastic Processes, 2nd edition, Academic Press, New York; London, etc., 1975 | MR | Zbl

[10] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Springer-Verlag, London; Berlin, etc., 1993 | MR | Zbl

[11] Woodroofe M., Nonlinear Renewal Theory in Sequential Analysis, CBMSNSF Reg. Conf. Ser. Appl. Math., 39, SIAM, Philadelphia, Pa, 1982 | MR