One-dimensional Asymptotically Homogeneous Markov Chains: Cram\'er Transform and Large Deviation Probabilities
Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 102-143
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a time-homogeneous ergodic Markov chain $\{X_n\}$ that takes values on the real line and has asymptotically homogeneous increments at infinity. We assume that the “limit jump” $\xi$ of $\{X_n\}$ has negative mean and satisfies the Cramér condition, i.e., the equation $\Bbb E\,e^{\beta\xi}=1$ has positive solution $\beta$. The asymptotic behavior of the probability $\mathbb P\{X_n>x\}$ is studied as $n\to\infty$ and $x\to\infty$. In particular, we distinguish the ranges of time $n$ where this probability is asymptotically equivalent to the tail of a stationary distribution.
@article{MT_2003_6_2_a4,
author = {D. A. Korshunov},
title = {One-dimensional {Asymptotically} {Homogeneous} {Markov} {Chains:} {Cram\'er} {Transform} and {Large} {Deviation} {Probabilities}},
journal = {Matemati\v{c}eskie trudy},
pages = {102--143},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a4/}
}
TY - JOUR AU - D. A. Korshunov TI - One-dimensional Asymptotically Homogeneous Markov Chains: Cram\'er Transform and Large Deviation Probabilities JO - Matematičeskie trudy PY - 2003 SP - 102 EP - 143 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2003_6_2_a4/ LA - ru ID - MT_2003_6_2_a4 ER -
D. A. Korshunov. One-dimensional Asymptotically Homogeneous Markov Chains: Cram\'er Transform and Large Deviation Probabilities. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 102-143. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a4/