Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2003_6_2_a3, author = {A. M. Lomshakov and Yu. G. Nikonorov and E. V. Firsov}, title = {Invariant {Einstein} {Metrics} on {Three-Locally-Symmetric} {Spaces}}, journal = {Matemati\v{c}eskie trudy}, pages = {80--101}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a3/} }
TY - JOUR AU - A. M. Lomshakov AU - Yu. G. Nikonorov AU - E. V. Firsov TI - Invariant Einstein Metrics on Three-Locally-Symmetric Spaces JO - Matematičeskie trudy PY - 2003 SP - 80 EP - 101 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2003_6_2_a3/ LA - ru ID - MT_2003_6_2_a3 ER -
A. M. Lomshakov; Yu. G. Nikonorov; E. V. Firsov. Invariant Einstein Metrics on Three-Locally-Symmetric Spaces. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 80-101. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a3/
[1] Besse A. L., Mnogoobraziya Einshteina, Mir, M., 1990
[2] Varden van der B. L., Algebra, Nauka, M., 1972
[3] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Nauka, M., 1966
[4] Nikonorov Yu. G., “Ob odnom klasse odnorodnykh kompaktnykh mnogoobrazii Einshteina”, Sib. mat. zhurn., 41:1 (2000), 200–205 | MR | Zbl
[5] Rodionov E. D., “Einshteinovy metriki na chetnomernykh odnorodnykh prostranstvakh, dopuskayuschikh odnorodnuyu rimanovu metriku polozhitelnoi sektsionnoi krivizny”, Sib. mat. zhurn., 32:3 (1991), 126–131
[6] Alekseevsky D., Dotti I., Ferraris C., “Homogeneous Ricci positive 5-manifolds”, Pacific J. Math., 175 (1966), 1–12 | MR
[7] Arvanitoyeorgos A., “New invariant Einstein metrics on generalized flag manifolds”, Trans. Amer. Math. Soc., 337:2 (1993), 981–995 | DOI | MR | Zbl
[8] D'Atri J. E., Nickerson H. K., “Geodesic symmetries in spaces with special curvature tensors”, J. Differential Geom., 9 (1974), 251–262 | MR
[9] D'Atri J. E., Ziller W., Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc., 18, no. 215, 1979 | MR
[10] Kerr M., “New examples of homogeneous Einstein metrics”, Michigan J. Math., 45 (1998), 115–134 | DOI | MR | Zbl
[11] Kimura M., “Homogeneous Einstein metrics on certain Kähler $C$-spaces”, Adv. Stud. Pure Math., 18:1 (1990), 303–320 | MR | Zbl
[12] Wallach N. R., “Compact homogeneous Riemannian manifolds with strictly positive curvature”, Ann. Math. (2), 96 (1972), 277–295 | DOI | MR | Zbl
[13] Wang M. Y., Ziller W., “Existence and non-existence of homogeneous Einstein metrics”, Invent. Math., 84 (1986), 177–194 | DOI | MR | Zbl