Invariant Einstein Metrics on Three-Locally-Symmetric Spaces
Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 80-101
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of existence and the number of invariant Einstein metrics on three-locally-symmetric spaces. We prove that if there are no isomorphic modules in the isotropy decomposition then the number of invariant Einstein metrics (up to isometry and homothety) varies from one to four. Basing on these results, we construct new examples of Einstein metrics.
@article{MT_2003_6_2_a3,
author = {A. M. Lomshakov and Yu. G. Nikonorov and E. V. Firsov},
title = {Invariant {Einstein} {Metrics} on {Three-Locally-Symmetric} {Spaces}},
journal = {Matemati\v{c}eskie trudy},
pages = {80--101},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a3/}
}
TY - JOUR AU - A. M. Lomshakov AU - Yu. G. Nikonorov AU - E. V. Firsov TI - Invariant Einstein Metrics on Three-Locally-Symmetric Spaces JO - Matematičeskie trudy PY - 2003 SP - 80 EP - 101 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2003_6_2_a3/ LA - ru ID - MT_2003_6_2_a3 ER -
A. M. Lomshakov; Yu. G. Nikonorov; E. V. Firsov. Invariant Einstein Metrics on Three-Locally-Symmetric Spaces. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 80-101. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a3/