Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~I
Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 14-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of mappings inducing a bounded operator of Lebesgue or Sobolev spaces by change of variable and the properties of the operator of extension of functions in Sobolev classes beyond the domain of definition. Throughout, we deduce and apply the properties of quasiadditive functions on open subsets of homogeneous spaces. We estimate the integral of the upper derivative of a set function which implies an easy proof of the Lebesgue Integral Differentiation Theorem and existence of a density almost everywhere. The article consists of two sections. In Section 1, apart from studying the properties of quasiadditive functions, we find necessary and sufficient conditions on a mapping inducing a bounded extension operator in Lebesgue spaces (in Sobolev spaces with weak first-order derivatives).
@article{MT_2003_6_2_a1,
     author = {S. K. Vodop'yanov and A. D.-O. Ukhlov},
     title = {Set {Functions} and {Their} {Applications} in {the~Theory} of {Lebesgue} and {Sobolev} {Spaces.~I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {14--65},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_2_a1/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
AU  - A. D.-O. Ukhlov
TI  - Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~I
JO  - Matematičeskie trudy
PY  - 2003
SP  - 14
EP  - 65
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_2_a1/
LA  - ru
ID  - MT_2003_6_2_a1
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%A A. D.-O. Ukhlov
%T Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~I
%J Matematičeskie trudy
%D 2003
%P 14-65
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_2_a1/
%G ru
%F MT_2003_6_2_a1
S. K. Vodop'yanov; A. D.-O. Ukhlov. Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~I. Matematičeskie trudy, Tome 6 (2003) no. 2, pp. 14-65. http://geodesic.mathdoc.fr/item/MT_2003_6_2_a1/

[1] Vodopyanov S. K., Formula Teilora i funktsionalnye prostranstva, Izd-vo Novosibirskogo un-ta, Novosibirsk, 1988

[2] Vodopyanov S. K., “$L_p$-teoriya potentsiala i kvazikonformnye otobrazheniya na odnorodnykh gruppakh”, Sovremennye problemy geometrii i analiza, ed. S. S. Kutateladze, Nauka, Novosibirsk, 1989, 45–89 | MR

[3] Vodopyanov S. K., “Otobrazheniya odnorodnykh grupp i vlozheniya funktsionalnykh prostranstv”, Sib. mat. zhurn., 30:5 (1989), 25–41 | MR | Zbl

[4] Vodopyanov S. K., “Vesovye prostranstva Soboleva i teoriya otobrazhenii”, Vsesoyuz. matematicheskaya shkola «Teoriya potentsiala», Tez. dokl. (Katsiveli, 26 iyunya–3 iyulya 1991), In-t matematiki AN USSR, Kiev, 1991, 7 | MR

[5] Vodopyanov S. K., Geometricheskie aspekty prostranstv obobschenno-differentsiruemykh funktsii, Dis. d-ra fiz.-mat. nauk, Institut matematiki im. S. L. Soboleva, Novosibirsk, 1992

[6] Vodopyanov S. K., “Kvazikonformnye otobrazheniya na gruppakh Karno”, Dokl. RAN, 347:4 (1996), 439–442 | MR | Zbl

[7] Vodopyanov S. K., “Monotonnye funktsii i kvazikonformnye otobrazheniya na gruppakh Karno”, Sib. mat. zhurn., 37:6 (1996), 1269–1295 | MR | Zbl

[8] Vodopyanov S. K., “$\mathcal P$-differentiability on Carnot groups in different topologies and related topics”, Trudy po analizu i geometrii, ed. S. K. Vodopyanova, Izd-vo In-ta matematiki, Novosibirsk, 2000, 603–670 | MR

[9] Vodopyanov S. K., “Topologicheskie i geometricheskie svoistva otobrazhenii klassov Soboleva s summiruemym yakobianom. I”, Sib. mat. zhurn., 41:1 (2000), 23–48 | MR | Zbl

[10] Vodopyanov S. K., “Operatory podstanovki prostranstv Soboleva”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Saratov, 2002, 42–43

[11] Vodopyanov S. K., “O differentsiruemosti otobrazhenii klassov Soboleva na gruppe Karno”, Mat. sb., 194:6 (2003), 67–86 | Zbl

[12] Vodopyanov S. K., Goldshtein V. M., “Strukturnye izomorfizmy prostranstv $W_n^1$ i kvazikonformnye otobrazheniya”, Sib. mat. zhurn., 16:2 (1975), 224–246 | Zbl

[13] Vodopyanov S. K., Goldshtein V. M., “Novyi funktsionalnyi invariant dlya kvazikonformnykh otobrazhenii”, Nekotorye voprosy sovremennoi teorii funktsii, Materialy konf., Novosibirsk, 1976, 18–20

[14] Vodoyayanov S. K., Goldshtein V. M., “Funktsionalnye kharakteristiki kvaziizometricheskikh otobrazhenii”, Sib. mat. zhurn., 17:4 (1976), 768–773 | Zbl

[15] Vodopyanov S. K., Greshnov A. V., “Analiticheskie svoistva kvazikonformnykh otobrazhenii na gruppakh Karno”, Sib. mat. zhurn., 36:6 (1995), 1317–1327 | MR | Zbl

[16] Vodopyanov S. K., Chernikov V. M., “Prostranstva Soboleva i gipoellipticheskie uravneniya”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 7–62

[17] Vodopyanov S. K., Ukhlov A. D., “Approksimativno differentsiruemye preobrazovaniya i zamena peremennykh na nilpotentnykh gruppakh”, Sib. mat. zhurn., 37:1 (1996), 70–89 | MR | Zbl

[18] Vodopyanov S. K., Ukhlov A. D., “Prostranstva Soboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zhurn., 39:4 (1998), 776–795 | MR | Zbl

[19] Vodopyanov S. K , Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Lebega i differentsiruemost kvaziadditivnykh funktsii mnozhestva”, Vladikavkazskii mat. zhurn., 4:1 (2002), 11–33

[20] Vodopyanov S. K , Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Dokl. RAN, 386:6 (2002), 730–734 | Zbl

[21] Vodopyanov S. K , Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Izv. vuzov. Matematika, 2002, no. 10 (486), 11–33

[22] Goldshtein V. M., Romanov A. S., “Ob otobrazheniyakh, sokhranyayuschikh prostranstva Soboleva”, Sib. mat. zhurn., 25:3 (1984), 55–61 | MR | Zbl

[23] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978

[24] Danford H., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[25] Kruglikov V. I., “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Mat. sb., 130:2 (1986), 185–206

[26] Mazya V. G., Klassy mnozhestv i teoremy vlozheniya funktsionalnykh prostranstv. Nekotorye voprosy teorii ellipticheskikh uravnenii, Dis. kand. fiz.-mat. nauk, Leningradskii gos. ordena Lenina universitet im. A. A. Zhdanova, L., 1961

[27] Mazya V. G., “O slabykh resheniyakh zadach Dirikhle i Neimana”, Tr. Mosk. mat. o-va, 20, 1969, 137–172 | MR | Zbl

[28] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo Leningr. un-ta, L., 1986

[29] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968

[30] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982

[31] Romanov A. S., “Strukturnye operatory v prostranstvakh $L_p$”, Sib. mat. zhurn., 21:1 (1980), 220–223 | Zbl

[32] Romanov A. S., “O zamene peremennoi v prostranstvakh potentsialov Besselya i Rissa”, Funktsionalnyi analiz i matematicheskaya fizika, IM SO AN SSSR, Novosibirsk, 1985, 117–133 | MR

[33] Ukhlov A. D., “Otobrazheniya, porozhdayuschie vlozheniya prostranstv Soboleva”, Sib. mat. zhurn., 34:1 (1993), 185–192 | MR

[34] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987

[35] Khalmosh P., Teoriya mery, Izd-vo inostr. lit., M., 1953

[36] Gehring F. W., “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Advances in the Theory of Reimann Surfaces, Proc. 1969 Stony Brook Conf., 1971, 175–193 | MR | Zbl

[37] Gol'dshteĭn V., Gurov L., “Applications of change of variables operators for exact embedding theorems”, Integral Equations Operator Theory, 19:1 (1994), 1–24 | DOI | MR

[38] Gol'dshteĭn V., Gurov L., and Romanov A., “Homeomorphisms that induce monomorphisms of Sobolev spaces”, Israel J. Math., 91:1–3 (1995), 31–60 | DOI | MR

[39] Heinonen J., “Calculus on Carnot groups”, Fall School in Analysis (Javäskylä), Univ. of Javäskylä, Javäskylä, 1994, 1–32 | MR

[40] Koranyi A., Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. in Math., 111 (1995), 1–87 | DOI | MR | Zbl

[41] Lelong-Ferrand J., “Etude d'une classe duplications liées à des homomorphismes d'algèbres de fonctions et généralisant les quasi-conformes”, Duke Math. J., 40:3 (1973), 163–186 | DOI | MR | Zbl

[42] Lewis L. G., “Quasiconformal mappings and Royden algebras in space”, Trans. Amer. Math. Soc., 158:2 (1971), 481–492 | DOI | MR

[43] Martio O., Rickman S., and Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I. Math., 1969, no. 448, 1–40 | MR

[44] Mostow G. D., “Quasiconformal mappings in $n$-space and the rigidity of hyperbolic spaces forms”, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53–104 | DOI | MR | Zbl

[45] Mostow G. D., Strong Rigidity of Locally Symmetric Spaces, Annals of Mathematics Studies, Princeton Univ. Press, Princeton, 1973 | MR | Zbl

[46] Nakai M., “Algebraic criterion on quasiconformal equivalence of Reimann surfaces”, Nagoya Math. J., 16 (1960), 157–184 | MR | Zbl

[47] Pansu P., “Métriques de Carnot-Carathéodory et quasiisometries des espacies symetriques de rang un”, Ann. of Math., 129 (1989), 1–60 | DOI | MR | Zbl

[48] Rado T., Reichelderfer P. V., Continuous Transformations in Analysis, Springer-Verlag, Berlin, 1955 | Zbl

[49] Reimann H. M., “Über harmonishe Kapazität und quasikonforme Abbildungen in Raum”, Comment. Math. Helv., 44 (1969), 264–307 | MR

[50] Stein E. M., Harmonic Analysis: Real-Variables Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[51] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer, Berlin, etc., 1971 | MR