On Independently Partitionable Sets of Semigroup Identities
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 98-154

Voir la notice de l'article provenant de la source Math-Net.Ru

A set $\Sigma$ of first-order sentences is said to be independently partitionable if there exists a partition $\Sigma=\bigcup_{n\in\mathbb N}\Sigma_n$ such that $\mathrm{var}\Sigma\ne\mathrm{var}\Sigma\setminus\Sigma_n$ for every $n\in\mathbb N$. A set $\Sigma$ of first-order sentences is said to be finitely independently partitionable if there exists a partition $\Sigma=\bigcup_{n\in\mathbb N}\Sigma_n$ such that $\Sigma_n$ is finite and $\mathrm{var}\Sigma\ne\mathrm{var}\Sigma\setminus\Sigma_n$ for every $n\in\mathbb N$. We construct some varieties $\mathfrak X$, $\mathfrak Y$, and $\mathfrak Z$ of semigroups such that $\mathfrak X$ has no independently partitionable basis for identities, $\mathfrak Y$ has an independently partitionable basis but has no finitely independently partitionable basis for identities, and $\mathfrak Z$ has a finitely independently partitionable basis but has no independent basis for identities. We also present varieties $\mathfrak X$ and $\mathfrak Y$ of semigroups such that $\mathfrak X\subset\mathfrak Y$, $\mathfrak X$ and $\mathfrak Y$ possess independent bases for their identities, and $\mathfrak X$ has an independently partitionable basis but has no finitely independently partitionable basis for its identities in $\mathfrak Y$; moreover, none of subvarieties of $\mathfrak Y$ covers $\mathfrak X$.
@article{MT_2003_6_1_a4,
     author = {V. Yu. Popov},
     title = {On {Independently} {Partitionable} {Sets} of {Semigroup} {Identities}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {98--154},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - On Independently Partitionable Sets of Semigroup Identities
JO  - Matematičeskie trudy
PY  - 2003
SP  - 98
EP  - 154
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/
LA  - ru
ID  - MT_2003_6_1_a4
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T On Independently Partitionable Sets of Semigroup Identities
%J Matematičeskie trudy
%D 2003
%P 98-154
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/
%G ru
%F MT_2003_6_1_a4
V. Yu. Popov. On Independently Partitionable Sets of Semigroup Identities. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 98-154. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/