On Independently Partitionable Sets of Semigroup Identities
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 98-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

A set $\Sigma$ of first-order sentences is said to be independently partitionable if there exists a partition $\Sigma=\bigcup_{n\in\mathbb N}\Sigma_n$ such that $\mathrm{var}\Sigma\ne\mathrm{var}\Sigma\setminus\Sigma_n$ for every $n\in\mathbb N$. A set $\Sigma$ of first-order sentences is said to be finitely independently partitionable if there exists a partition $\Sigma=\bigcup_{n\in\mathbb N}\Sigma_n$ such that $\Sigma_n$ is finite and $\mathrm{var}\Sigma\ne\mathrm{var}\Sigma\setminus\Sigma_n$ for every $n\in\mathbb N$. We construct some varieties $\mathfrak X$, $\mathfrak Y$, and $\mathfrak Z$ of semigroups such that $\mathfrak X$ has no independently partitionable basis for identities, $\mathfrak Y$ has an independently partitionable basis but has no finitely independently partitionable basis for identities, and $\mathfrak Z$ has a finitely independently partitionable basis but has no independent basis for identities. We also present varieties $\mathfrak X$ and $\mathfrak Y$ of semigroups such that $\mathfrak X\subset\mathfrak Y$, $\mathfrak X$ and $\mathfrak Y$ possess independent bases for their identities, and $\mathfrak X$ has an independently partitionable basis but has no finitely independently partitionable basis for its identities in $\mathfrak Y$; moreover, none of subvarieties of $\mathfrak Y$ covers $\mathfrak X$.
@article{MT_2003_6_1_a4,
     author = {V. Yu. Popov},
     title = {On {Independently} {Partitionable} {Sets} of {Semigroup} {Identities}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {98--154},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - On Independently Partitionable Sets of Semigroup Identities
JO  - Matematičeskie trudy
PY  - 2003
SP  - 98
EP  - 154
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/
LA  - ru
ID  - MT_2003_6_1_a4
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T On Independently Partitionable Sets of Semigroup Identities
%J Matematičeskie trudy
%D 2003
%P 98-154
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/
%G ru
%F MT_2003_6_1_a4
V. Yu. Popov. On Independently Partitionable Sets of Semigroup Identities. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 98-154. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a4/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975

[2] Arshon S. E., “Dokazatelstvo suschestvovaniya $n$-znachnykh beskonechnykh asimmetrichnykh posledovatelnostei”, Mat. sb., 2(44):4 (1937), 769–779 | Zbl

[3] Gorbunov V. A., “Pokrytiya v reshetkakh kvazimnogoobrazii i nezavisimaya aksiomatiziruemost”, Algebra i logika, 16:5 (1977), 507–548 | MR | Zbl

[4] Gorbunov V. A., Algebraicheskaya teoriya kvazimnogoobrazii, Nauchnaya kniga, Novosibirsk, 1999

[5] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982

[6] Zimin A. I., “Blokiruyuschie mnozhestva termov”, Mat. sb., 119 (1982), 363–375 | MR

[7] Kleiman E. I., “Ob uslovii pokrytiya v reshetke mnogoobrazii inversnykh polugrupp”, Issledovaniya algebraicheskikh sistem po svoistvam ikh podsistem, UNTs AN SSSR, Sverdlovsk, 1980, 76–91 | MR

[8] Kleiman Yu. G., “O nekotorykh voprosakh teorii mnogoobrazii grupp”, Izv. AN SSSR. Ser. mat., 47:1 (1983), 37–74 | MR | Zbl

[9] Maltsev A. I., “Universalno aksiomatiziruemye podklassy lokalno konechnykh klassov modelei”, Sib. mat. zhurn., 8:5 (1967), 1005–1014 | MR

[10] Murskii V. L., “Neskolko primerov mnogoobrazii polugrupp”, Mat. zametki, 3:6 (1968), 663–670 | Zbl

[11] Sapir M. V., “Malye, krossovy i predelnye mnogoobraziya polugrupp”, XVI Vsesoyuz. algebraich. konf., Tez. dokl., ch. 2, L., 1981, 142–143

[12] Sverdlovskaya tetrad, Nereshennye zadachi teorii polugrupp, UNTs AN SSSR, Sverdlovsk, 1979

[13] Trakhtman A. N., “Mnogoobrazie polugrupp bez neprivodimogo bazisa tozhdestv”, Mat. zametki, 21:6 (1977), 865–872 | MR | Zbl

[14] Trakhtman A. N., “Shestielementnaya polugruppa, porozhdayuschaya mnogoobrazie s kontinuumom podmnogoobrazii”, Algebraicheskie sistemy i ikh mnogoobraziya, UNTs AN SSSR, Sverdlovsk, 1988, 138–143 | MR

[15] Shevrnn L. Ya., Volkov M. V., “Tozhdestva polugrupp”, Izv. vuzov. Matematika, 1985, no. 11, 3–47

[16] Bean D. R., Ehrenfeucht A., and McNulty G., “Avoidable patterns in strings of symbols”, Pacific J. Math., 85 (1979), 261–294 | MR | Zbl

[17] Perkins P., Decision Problems for Equational Theories of Semigroups and General Algebras, Ph.D. Thesis, Univ. of California Press, Berkeley, California, 1966

[18] Perkins P., “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl

[19] Pollak G., “Some lattices of varieties containing elements without cover”, Noncommutative Structures in Algebra and Geometric Combinatorics, Rome, 1981, 91–96 | MR | Zbl

[20] Reznikoff I., “Tout ensemble de formules de la logique classique est équivalent a un ensemble independant”, S. R. Acad. Sci. Paris, 260 (1965), 2385–2388 | MR | Zbl

[21] Tarski A., “Equational logic and equational theories of algebras”, Contrib. Math. Logic, Proc. Logic Colloq. (Hannover, 1966), North-Holland, Amsterdam, 1968, 275–288 | MR