Oscillating Random Walks with Two Levels of Switching
Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 34-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Markov random walk $X_n$, $n\ge 0$, generated by the sums of independent random variables. Each successive jump of the random walk is distributed in accord with one of three laws in dependence on the location of a walking particle: within some interval $[a,b]$, to the left of the point $a$, or to the right of the point $b$. Using factorization methods, we obtain some representations for the double Laplace–Stieltjes transforms (in time and spatial variables) of the distribution of $X_n$ and find the transforms of the stationary distribution of a chain.
@article{MT_2003_6_1_a2,
     author = {D. K. Kim and V. I. Lotov},
     title = {Oscillating {Random} {Walks} with {Two} {Levels} of {Switching}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {34--74},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2003_6_1_a2/}
}
TY  - JOUR
AU  - D. K. Kim
AU  - V. I. Lotov
TI  - Oscillating Random Walks with Two Levels of Switching
JO  - Matematičeskie trudy
PY  - 2003
SP  - 34
EP  - 74
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2003_6_1_a2/
LA  - ru
ID  - MT_2003_6_1_a2
ER  - 
%0 Journal Article
%A D. K. Kim
%A V. I. Lotov
%T Oscillating Random Walks with Two Levels of Switching
%J Matematičeskie trudy
%D 2003
%P 34-74
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2003_6_1_a2/
%G ru
%F MT_2003_6_1_a2
D. K. Kim; V. I. Lotov. Oscillating Random Walks with Two Levels of Switching. Matematičeskie trudy, Tome 6 (2003) no. 1, pp. 34-74. http://geodesic.mathdoc.fr/item/MT_2003_6_1_a2/

[1] Borovkov A. A., “Novye predelnye teoremy v granichnykh zadachakh dlya summ nezavisimykh slagaemykh”, Sib. mat. zhurn., 3:5 (1962), 645–694 | MR | Zbl

[2] Borovkov A. A., “Predelnoe raspredelenie dlya ostsilliruyuschego sluchainogo bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 25:3 (1980), 663–665

[3] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 1999

[4] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M., 1999

[5] Gusak D. V., “Ob ostsilliruyuschikh skhemakh sluchainogo bluzhdaniya. I”, Teoriya veroyatnostei i ee primeneniya, 39:1 (1988), 33–39 | MR

[6] Gusak D. V., “Ob ostsilliruyuschikh skhemakh sluchainogo bluzhdaniya. II”, Teoriya veroyatnostei i ee primeneniya, 40:1 (1989), 11–17

[7] Gusak D. V., “Ostsilliruyuschie protsessy s nezavisimymi prirascheniyami i nevyrozhdennoi vinerovskoi komponentoi”, Ukr. mat. zhurn., 42:10 (1990), 1415–1421 | MR | Zbl

[8] Lotov V. I., “Asimptoticheskii analiz raspredelenii v dvugranichnykh zadachakh. I”, Teoriya veroyatnostei i ee primeneniya, 24:3 (1979), 475–485 | MR | Zbl

[9] Lotov V. I., “Ob ostsilliruyuschikh sluchainykh bluzhdaniyakh”, Sib. mat. zhurn., 37:4 (1996), 869–880 | MR | Zbl

[10] Prokhorov Yu. V., “Upravlenie vinerovskim protsessom pri ogranichennom chisle pereklyuchenii”, Tr. Mat. in-ta im. V. A. Steklova, 71, 1964, 82–87 | MR | Zbl