Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2002_5_2_a3, author = {A. V. Greshnov}, title = {Existence of {the~Domains} that {Satisfy} {the~Interior} and {Exterior} {Corkscrew} {Conditions}}, journal = {Matemati\v{c}eskie trudy}, pages = {138--154}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a3/} }
A. V. Greshnov. Existence of the~Domains that Satisfy the~Interior and Exterior Corkscrew Conditions. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 138-154. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a3/
[1] Vodopyanov S. K., Greshnov A. V., “O prodolzhenii funktsii ogranichennoi srednei ostsillyatsii na prostranstvakh odnorodnogo tipa s vnutrennei metrikoi”, Sib. mat. zhurn., 36:5 (1995), 1015–1048 | MR | Zbl
[2] Greshnov A. V., “Oblasti, udovletvoryayuschie usloviyam vnutrennei i vneshnei spiralei, na metricheskikh prostranstvakh”, Algebra, analiz, geometriya i matematicheskaya fizika, 12-ya sibirskaya shkola (18–23 iyulya 1998 g.), eds. Yu. G. Reshetnyak, S. K. Vodopyanov, I. A. Taimanov, Izd-vo In-ta matematiki RAN, Novosibirsk, 1999, 54–67
[3] Greshnov A. V., “O ravnomernykh i NTA-oblastyakh na gruppakh Karno”, Sib. mat. zhurn., 42:5 (2001), 1018–1035 | MR | Zbl
[4] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978
[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968
[6] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964
[7] Capogna L., Garofalo N., “Non-tangentially accessible domains for Carnot–Carathéodory metrics and a Fatou type theorem”, C. R. Acad. Sci. Paris. Ser. I. Math., 321:12 (1995), 1565–1570 | MR | Zbl
[8] Capogna L., Garofalo N., “Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot–Carathéodory metrics”, J. Fourier Anal. Appl., 4:4 (1998), 403–432 | DOI | MR | Zbl
[9] Capogna L., Tang P., “Uniform domains and quasiconformal mappings on Heisenberg group”, Manuscripta Math., 86:3 (1995), 267–281 | DOI | MR | Zbl
[10] Folland G. B., Stein I., Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl
[11] Gehring F., Osgood B., “Uniform domains and quasihyperbolic metric”, J. Analyse Math., 36 (1979), 50–74 | DOI | MR | Zbl
[12] Greshnov A. V., “Extension of differentiable functions beyond the boundary of the domain on Carnot groups”, Siberian Adv. Math., 7:3 (1997), 20–62 | MR
[13] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Reimannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[14] Hajlazs P., Koskela P., Sobolev met Poincare, Mem. Amer. Math. Soc., 688, 2000
[15] Hormander L., “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR
[16] Jerison D., Kenig S., “Boundary behavior of harmonic functions in nontangentially accessible domains”, Adv. Math., 46:1 (1982), 80–147 | DOI | MR | Zbl
[17] John F., “Rotation and strain”, Comm. Pure Appl. Math., 14 (1961), 391–413 | DOI | MR | Zbl
[18] Jones P., “Extension theorems for BMO”, Indiana Univ. Math. J., 29:1 (1980), 41–66 | DOI | MR | Zbl
[19] Jones P., “Quasiconformal mappings and extendibility of functions in Sobolev spaces”, Acta Math., 147 (1981), 71–88 | DOI | MR | Zbl
[20] Koranyi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111 (1995), 1–87 | DOI | MR | Zbl
[21] Martio O., Sarvas J., “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A I. Math., 4:2 (1979), 383–401 | MR | Zbl
[22] Nhieu D.-M., “Extension of Sobolev spaces on the Heisenberg group”, C. R. Acad. Sci. Paris. Ser. I. Math., 321:12 (1995), 1559–1564 | MR | Zbl
[23] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., 129 (1989), 1–60 (French) | DOI | MR | Zbl
[24] Wittmann R., “A non-tangential limit theorem”, Osaka J. Math., 24:1 (1987), 61–76 | MR | Zbl