Existence of the~Domains that Satisfy the~Interior and Exterior Corkscrew Conditions
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 138-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss some questions concerning the problems of existence of uniform and NTA domains in complete metric spaces of homogeneous type with intrinsic metric. For such spaces we construct a sufficiently wide class of bounded John domains and prove existence of bounded domains satisfying the interior and exterior corkscrew conditions simultaneously. We find natural conditions on the geometry of complete metric spaces of homogeneous type with intrinsic metric under which the problem of existence of bounded NTA domains is solved in the affirmative.
@article{MT_2002_5_2_a3,
     author = {A. V. Greshnov},
     title = {Existence of {the~Domains} that {Satisfy} {the~Interior} and {Exterior} {Corkscrew} {Conditions}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {138--154},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a3/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Existence of the~Domains that Satisfy the~Interior and Exterior Corkscrew Conditions
JO  - Matematičeskie trudy
PY  - 2002
SP  - 138
EP  - 154
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a3/
LA  - ru
ID  - MT_2002_5_2_a3
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Existence of the~Domains that Satisfy the~Interior and Exterior Corkscrew Conditions
%J Matematičeskie trudy
%D 2002
%P 138-154
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a3/
%G ru
%F MT_2002_5_2_a3
A. V. Greshnov. Existence of the~Domains that Satisfy the~Interior and Exterior Corkscrew Conditions. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 138-154. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a3/

[1] Vodopyanov S. K., Greshnov A. V., “O prodolzhenii funktsii ogranichennoi srednei ostsillyatsii na prostranstvakh odnorodnogo tipa s vnutrennei metrikoi”, Sib. mat. zhurn., 36:5 (1995), 1015–1048 | MR | Zbl

[2] Greshnov A. V., “Oblasti, udovletvoryayuschie usloviyam vnutrennei i vneshnei spiralei, na metricheskikh prostranstvakh”, Algebra, analiz, geometriya i matematicheskaya fizika, 12-ya sibirskaya shkola (18–23 iyulya 1998 g.), eds. Yu. G. Reshetnyak, S. K. Vodopyanov, I. A. Taimanov, Izd-vo In-ta matematiki RAN, Novosibirsk, 1999, 54–67

[3] Greshnov A. V., “O ravnomernykh i NTA-oblastyakh na gruppakh Karno”, Sib. mat. zhurn., 42:5 (2001), 1018–1035 | MR | Zbl

[4] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968

[6] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[7] Capogna L., Garofalo N., “Non-tangentially accessible domains for Carnot–Carathéodory metrics and a Fatou type theorem”, C. R. Acad. Sci. Paris. Ser. I. Math., 321:12 (1995), 1565–1570 | MR | Zbl

[8] Capogna L., Garofalo N., “Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot–Carathéodory metrics”, J. Fourier Anal. Appl., 4:4 (1998), 403–432 | DOI | MR | Zbl

[9] Capogna L., Tang P., “Uniform domains and quasiconformal mappings on Heisenberg group”, Manuscripta Math., 86:3 (1995), 267–281 | DOI | MR | Zbl

[10] Folland G. B., Stein I., Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[11] Gehring F., Osgood B., “Uniform domains and quasihyperbolic metric”, J. Analyse Math., 36 (1979), 50–74 | DOI | MR | Zbl

[12] Greshnov A. V., “Extension of differentiable functions beyond the boundary of the domain on Carnot groups”, Siberian Adv. Math., 7:3 (1997), 20–62 | MR

[13] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Reimannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[14] Hajlazs P., Koskela P., Sobolev met Poincare, Mem. Amer. Math. Soc., 688, 2000

[15] Hormander L., “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR

[16] Jerison D., Kenig S., “Boundary behavior of harmonic functions in nontangentially accessible domains”, Adv. Math., 46:1 (1982), 80–147 | DOI | MR | Zbl

[17] John F., “Rotation and strain”, Comm. Pure Appl. Math., 14 (1961), 391–413 | DOI | MR | Zbl

[18] Jones P., “Extension theorems for BMO”, Indiana Univ. Math. J., 29:1 (1980), 41–66 | DOI | MR | Zbl

[19] Jones P., “Quasiconformal mappings and extendibility of functions in Sobolev spaces”, Acta Math., 147 (1981), 71–88 | DOI | MR | Zbl

[20] Koranyi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111 (1995), 1–87 | DOI | MR | Zbl

[21] Martio O., Sarvas J., “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A I. Math., 4:2 (1979), 383–401 | MR | Zbl

[22] Nhieu D.-M., “Extension of Sobolev spaces on the Heisenberg group”, C. R. Acad. Sci. Paris. Ser. I. Math., 321:12 (1995), 1559–1564 | MR | Zbl

[23] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., 129 (1989), 1–60 (French) | DOI | MR | Zbl

[24] Wittmann R., “A non-tangential limit theorem”, Osaka J. Math., 24:1 (1987), 61–76 | MR | Zbl