Closure of Classes of Mappings with Bounded Distortion on Carnot Groups
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 92-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the limit of a locally uniformly convergent sequence of analytic functions is an analytic function. Yu. G. Reshetnyak obtained a natural generalization of this result in the theory of mappings with bounded distortion: the limit of a locally uniformly convergent sequence of mappings with bounded distortion is a mapping with bounded distortion. The present article is devoted to extending this result to nonholonomic structures. As a model, we consider the geometry of Carnot groups. Since the geometry of these groups is non-Riemannian, there appear some constraints on applying analytic tools for groups. In particular, at present the method of the proof by Yu. G. Reshetnyak for the above-mentioned result cannot be implemented for Carnot groups. We give a method of proving the closure theorem which is new also for Euclidean space.
@article{MT_2002_5_2_a2,
     author = {S. K. Vodop'yanov},
     title = {Closure of {Classes} of {Mappings} with {Bounded} {Distortion} on {Carnot} {Groups}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {92--137},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a2/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
TI  - Closure of Classes of Mappings with Bounded Distortion on Carnot Groups
JO  - Matematičeskie trudy
PY  - 2002
SP  - 92
EP  - 137
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a2/
LA  - ru
ID  - MT_2002_5_2_a2
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%T Closure of Classes of Mappings with Bounded Distortion on Carnot Groups
%J Matematičeskie trudy
%D 2002
%P 92-137
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a2/
%G ru
%F MT_2002_5_2_a2
S. K. Vodop'yanov. Closure of Classes of Mappings with Bounded Distortion on Carnot Groups. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 92-137. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a2/

[1] Vodopyanov S. K., “Monotonnye funktsii i kvazikonformnye otobrazheniya na gruppakh Karno”, Sib. mat. zhurn., 37:6 (1996), 1269–1295 | MR | Zbl

[2] Vodopyanov S. K., “Otobrazheniya s ogranichennym iskazheniem i konechnym iskazheniem na gruppakh Karno”, Sib. mat. zhurn., 40:4 (1999), 764–804 | MR

[3] Vodopyanov S. K., “$\mathcal P$-differentiability on Carnot groups in different topologies and related topics”, Trudy po analizu i geometrii, ed. S. K. Vodopyanov, Izd-vo In-ta matematiki, Novosibirsk, 2000, 603–670 | MR

[4] Vodopyanov S. K., “Topologicheskie svoistva otobrazhenii klassov Soboleva s summiruemym yakobianom. I”, Sib. mat. zhurn., 41:1 (2000), 23–48 | MR | Zbl

[5] Vodopyanov S. K., “O zamknutosti klassov otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Dokl. RAN, 381:4 (2001), 439–443 | MR | Zbl

[6] Vodopyanov S. K., “O differentsiruemosti otobrazhenii klassov Soboleva na gruppe Karno”, Dokl. RAN, 382:3 (2002), 305–309 | MR | Zbl

[7] Vodopyanov S. K., Greshnov A. V., “Analiticheskie svoistva kvazikonformnykh otobrazhenii na gruppe Karno”, Sib. mat. zhurn., 36:6 (1995), 1317–1327 | MR | Zbl

[8] Vodopyanov S. K., Kudryavtseva N. A., “Normalnye semeistva otobrazhenii na gruppakh Karno”, Sib. mat. zhurn., 37:2 (1996), 273–286 | MR | Zbl

[9] Vodopyanov S. K., Markina I. G., “Lokalnye otsenki dlya otobrazhenii s ogranichennym $s$-iskazheniem na gruppakh Karno”, Algebra, analiz, geometriya i matematicheskaya fizika, 12-ya sibirskaya shkola (18–23 iyulya 1998 g.), eds. Yu. G. Reshetnyak, S. K. Vodopyanov, I. A. Taimanov, Izd-vo In-ta matematiki RAN, Novosibirsk, 1999, 28–53

[10] Vodopyanov S. K., Ukhlov A. D., “Approksimativno differentsiruemye preobrazovaniya i zamena peremennoi na nilpotentnykh gruppakh”, Sib. mat. zhurn., 37:1 (1996), 70–89 | MR | Zbl

[11] Vodopyanov S. K., Ukhlov A. D., “Klassy Soboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zhurn., 39:4 (1998), 776–795 | MR | Zbl

[12] Dairbekov N. S., “Otobrazheniya s ogranichennym iskazheniem na gruppakh Geizenberga”, Sib. mat. zhurn., 41:3 (2000), 567–590 | Zbl

[13] Dairbekov N. S., “Mapping with bounded distortion of two-step Carnot groups”, Trudy po analizu i geometrii, 122–155, ed. S. K. Vodopyanov, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2000 | MR

[14] Poletskii E. A., “Metod modulei dlya negomeomorfnykh kvazikonformnykh otobrazhenii”, Mat. sb., 83:2 (1970), 261–272 | MR | Zbl

[15] Poletskii E. A., “O stiranii osobennostei kvazikonformnykh otobrazhenii”, Mat. sb., 92:2 (1970), 242–256

[16] Reshetnik Yu. G., “Prostranstvennye otobrazheniya s ogranichennym iskazheniem”, Sib. mat. zhurn., 8:3 (1967), 652–686

[17] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982

[18] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve”, Sib. mat. zhurn., 38:3 (1997), 657–675 | MR

[19] Bojarski V., Iwaniec T., “Analytical foundations of the theory of quasiconformal mappings in $\mathbb R^n$”, Ann. Acad. Sci. Fenn. Ser. A I. Math., 8 (1983), 257–324 | MR | Zbl

[20] Capogna L., “Regularity of quasilinear equations in the Heisenberg group”, Comm. Pure Appl. Math., 50 (1997), 867–889 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[21] Chernikov V. M., Vodopyanov S. K., “Sobolev spaces and hypoelliptic equations. I”, Siberian Adv. Math., 6:3 (1996), 27–67 | MR

[22] Chernikov V. M., Vodop'yanov S. K., “Sobolev spaces and hypoelliptic equations. II”, Siberian Adv. Math., 6:4 (1996), 64–96 | MR

[23] Folland G. B., “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13:2 (1975), 161–208 | DOI | MR

[24] Folland G. B., Stein I., Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[25] Heinonen J., “Calculus on Carnot groups”, Fall School in Analysis (Javaskyla, 1994), University of Javaskyla, Javaskyla, 1994, 1–32 | MR

[26] Heinonen J., Holopainen I., “Quasiregular maps on Carnot groups”, J. Geom. Anal., 7:1 (1997), 109–148 | MR | Zbl

[27] Heinonen J., Kilpelainen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, etc., 1993 | MR | Zbl

[28] Garofalo N., Nhieu D.-M., “Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces”, Comm. Pure Appl. Math., 49 (1996), 1081–1144 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[29] Korányi A., Reimann H. M., “Horizontal normal vectors and conformal capacity”, Bull. Sci. Math. (2), 111 (1987), 3–21 | MR | Zbl

[30] Korányi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111 (1995), 1–87 | DOI | MR | Zbl

[31] Markina I. G., Vodop'yanov S. K., “Fundamentals of the nonlinear potential theory for subelliptic equations. I”, Siberian Adv. Math., 7:1 (1997), 32–62 | MR

[32] Markina I. G., Vodop'yanov S. K., “Fundamentals of the nonlinear potential theory for subelliptic equations. II”, Siberian Adv. Math., 7:2 (1997), 18–63 | MR

[33] Martio O., “A capacity inequality for quasiregular mappings”, Ann. Acad. Sci Fenn. Ser. A I. Math., 474 (1970), 1–18 | MR

[34] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I. Math., 448 (1969), 1–40 | MR

[35] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., 129 (1989), 1–60 (French) | DOI | MR | Zbl

[36] Rickman S., Quasiregular Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[37] Sarvas J., “On the local behavior of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I. Math., 1975, no. 1, 221–226 | MR | Zbl

[38] Srebro U., “Quasiregular mappings”, Advances in Complex Analysis, Lecture Notes in Math., 505, Springer-Verlag, Berlin, 1976, 148–163 | MR

[39] Titus C. J., Young G. S., “The extension of interiority with some applications”, Trans. Amer. Math. Soc., 103 (1962), 329–340 | DOI | MR | Zbl

[40] Whyburn G. T., Analytic Topology, Amer. Math. Soc. Colloquium Publications, 28, Amer. Math. Soc., New York, 1942 | MR | Zbl