Large Deviations of the~Waiting Time for Tandem Queueing Systems
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 3-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some queueing system with two sequential servers (a tandem queueing system). Let the ergodicity conditions be satisfied. In a stationary regime denote by $T_i$ the waiting time of the beginning of servicing at the $i$th, $i=1,2$, server. In the article we obtain some conditions for an integro-local version of the large deviation principle to hold for the vector $T=(T_1,T_2)$: given a square $$ \Delta(x)=\bigl\{y=(y_1,y_2):x_i\le y_i+\Delta,\ i=1,2\bigr\}, $$ we have $$ \lim_{|x|\to\infty,\,x/|x|\to\omega}\frac1{|x|}\ln{\mathbb P}\bigl(T\in\Delta(x)\bigr)=-{}\,\overline{\!D}(\omega), $$ with $|x|=(x_1^2+x_2^2)^{1/2}$ and ${}\,\overline{\!D}(\omega)$ the deviation function in explicit form.
@article{MT_2002_5_2_a0,
     author = {F. Avram and A. A. Mogul'skii},
     title = {Large {Deviations} of {the~Waiting} {Time} for {Tandem} {Queueing} {Systems}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--37},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/}
}
TY  - JOUR
AU  - F. Avram
AU  - A. A. Mogul'skii
TI  - Large Deviations of the~Waiting Time for Tandem Queueing Systems
JO  - Matematičeskie trudy
PY  - 2002
SP  - 3
EP  - 37
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/
LA  - ru
ID  - MT_2002_5_2_a0
ER  - 
%0 Journal Article
%A F. Avram
%A A. A. Mogul'skii
%T Large Deviations of the~Waiting Time for Tandem Queueing Systems
%J Matematičeskie trudy
%D 2002
%P 3-37
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/
%G ru
%F MT_2002_5_2_a0
F. Avram; A. A. Mogul'skii. Large Deviations of the~Waiting Time for Tandem Queueing Systems. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 3-37. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/