Large Deviations of the~Waiting Time for Tandem Queueing Systems
Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 3-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some queueing system with two sequential servers (a tandem queueing system). Let the ergodicity conditions be satisfied. In a stationary regime denote by $T_i$ the waiting time of the beginning of servicing at the $i$th, $i=1,2$, server. In the article we obtain some conditions for an integro-local version of the large deviation principle to hold for the vector $T=(T_1,T_2)$: given a square $$ \Delta(x)=\bigl\{y=(y_1,y_2):x_i\le y_i+\Delta,\ i=1,2\bigr\}, $$ we have $$ \lim_{|x|\to\infty,\,x/|x|\to\omega}\frac1{|x|}\ln{\mathbb P}\bigl(T\in\Delta(x)\bigr)=-{}\,\overline{\!D}(\omega), $$ with $|x|=(x_1^2+x_2^2)^{1/2}$ and ${}\,\overline{\!D}(\omega)$ the deviation function in explicit form.
@article{MT_2002_5_2_a0,
     author = {F. Avram and A. A. Mogul'skii},
     title = {Large {Deviations} of {the~Waiting} {Time} for {Tandem} {Queueing} {Systems}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--37},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/}
}
TY  - JOUR
AU  - F. Avram
AU  - A. A. Mogul'skii
TI  - Large Deviations of the~Waiting Time for Tandem Queueing Systems
JO  - Matematičeskie trudy
PY  - 2002
SP  - 3
EP  - 37
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/
LA  - ru
ID  - MT_2002_5_2_a0
ER  - 
%0 Journal Article
%A F. Avram
%A A. A. Mogul'skii
%T Large Deviations of the~Waiting Time for Tandem Queueing Systems
%J Matematičeskie trudy
%D 2002
%P 3-37
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/
%G ru
%F MT_2002_5_2_a0
F. Avram; A. A. Mogul'skii. Large Deviations of the~Waiting Time for Tandem Queueing Systems. Matematičeskie trudy, Tome 5 (2002) no. 2, pp. 3-37. http://geodesic.mathdoc.fr/item/MT_2002_5_2_a0/

[1] Borovkov A. A., Teoriya veroyatnostei, Izd. 2-e, Nauka, M., 1986 ; Изд. 3-е, Эдиториал УРСС, М., 1999; Новосибирск, Изд-во Ин-та математики СО РАН, 1999 | MR | Zbl

[2] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Tr. In-ta matematiki SO RAN, 21, Nauka, Novosibirsk, 1992

[3] Borovkov A. A., Mogulskii A. A., “Vtoraya funktsiya uklonenii i asimptoticheskie zadachi vosstanovleniya i dostizheniya granitsy dlya mnogomernykh bluzhdanii”, Sib. mat. zhurn., 37:4 (1996), 745–782 | MR | Zbl

[4] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya i asimptoticheskie razlozheniya. I”, Teoriya veroyatnostei i ee primeneniya, 43:1 (1998), 3–17 | MR | Zbl

[5] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya i asimptoticheskie razlozheniya. II”, Teoriya veroyatnostei i ee primeneniya, 45:1 (2000), 5–29 | MR | Zbl

[6] Borovkov A. A., Mogulskii A. A., “Bolshie ukloneniya tsepei Markova v polozhitelnom kvadrante”, Uspekhi mat. nauk, 56:5 (341) (2001), 3–116 | MR | Zbl

[7] Ignatyuk L., Malyshev V., Scherbakov V., “Vliyanie granits v probleme bolshikh uklonenii”, Uspekhi mat. nauk, 49:2 (296) (1994), 43–102 | MR | Zbl

[8] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. I: Lokalnye teoremy”, Mat. trudy, 2:2 (1999), 57–97 | MR | Zbl

[9] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. II: Integralnaya teorema”, Mat. trudy, 3:1 (2000), 48–118 | MR

[10] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. III: Konstanty v integralnoi i lokalnoi teoremakh”, Mat. trudy, 4:1 (2001), 68–93 | MR | Zbl

[11] Baccelli F., Bremaud P., Elements of Queueing Theory, Applications of Math., 26, Springer-Verlag, Berlin, 1994 | MR | Zbl

[12] Borovkov A. A., Mogulskii A. A., Abstracts of Communications of the 23rd Conf. on Stochastic Processes and Their Applications, Singapore, 1995

[13] Borovkov A. A., Mogulskii A. A., Large deviations for stationary Markov chains in quarter plane, Proc. of the Japan-Russia Symposium in Probability Theory and Mathematical Statistics, Tokyo, 1995

[14] Dobrushin R. L., Pechersky E. A., “Large deviations for tandem queueing systems”, J. Appl. Math. Stochastic. Anal., 7:3 (1994), 301–330 | DOI | MR | Zbl

[15] Ganesh A. J., “Large deviations of the sojourn time for queues in series”, Ann. Oper. Res., 79 (1998), 3–26 | DOI | MR | Zbl

[16] Ganesh A. J., Avantharam V., “Stationary tail probabilities in exponential server tandems with renewal arrivals”, Queueing Systems Theory Appl., 22 (1996), 203–247 | DOI | MR | Zbl

[17] Loynes R. M., “The stability of a system of queues in series”, Math. Proc. Cambridge Philos. Soc., 60 (1964), 569–574 | DOI | MR | Zbl