Stagnation Zones of Solutions to the~Laplace--Beltrami Equation in Long Strips
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 84-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the stagnation zones for solutions to the Laplace–Beltrami equation, i.e. the domains ($s$-zones) in which the solutions are close to constants. The estimates for the sizes of $s$-zones in long strips are pointed out for various types of boundary conditions.
@article{MT_2002_5_1_a5,
     author = {V. M. Miklyukov},
     title = {Stagnation {Zones} of {Solutions} to {the~Laplace--Beltrami} {Equation} in {Long} {Strips}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {84--101},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a5/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - Stagnation Zones of Solutions to the~Laplace--Beltrami Equation in Long Strips
JO  - Matematičeskie trudy
PY  - 2002
SP  - 84
EP  - 101
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a5/
LA  - ru
ID  - MT_2002_5_1_a5
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T Stagnation Zones of Solutions to the~Laplace--Beltrami Equation in Long Strips
%J Matematičeskie trudy
%D 2002
%P 84-101
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_1_a5/
%G ru
%F MT_2002_5_1_a5
V. M. Miklyukov. Stagnation Zones of Solutions to the~Laplace--Beltrami Equation in Long Strips. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 84-101. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a5/

[1] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965

[2] Oleinik O. A., Radkevich E. V., “Analitichnost i teoremy tipa Liuvillya i Fragmena — Lindelefa dlya obschikh ellipticheskikh sistem uravnenii”, Mat. sb., 95(137):1 (1974), 130–145 | MR | Zbl

[3] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987

[4] Alum N. R., White J., “A coupled numerical technique for self-consistent analysis of micro-electromechanical systems”, ASME J. Micro-Electromech. Syst. (MEMS), 59 (1996), 275–280

[5] Khrustalev D., Faghri A., “Coupled liquid and vapour flow in miniature passages with microgrooves”, Trans. ASME J. of Heat Transfer, 121:3 (1999), 729–733 | DOI

[6] Miklyukov V. M., Tkachev V. G., “Denjoy–Ahlfors theorem for harmonic functions on Riemannian manifolds and external structure of minimal surfaces”, Comm. Anal. Geom., 4:4 (1996), 547–587 | MR | Zbl

[7] Nie Y. Y., “Navier–Stokes analysis of gaseous slip flow in long grooves”, Numerical Heat Transfer / Part A, 36 (1999), 75–93 | DOI | MR

[8] Olejnik O. A., Iosif'yan G. A., “Boundary value problems for second order elliptic equations in unbounded domains and Saint-Venant's Principle”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1977, no. 2, 269–290 | MR | Zbl

[9] Peterson G. P., Ma H. B., “Temperature response of heat transport in a microheat pipe”, Trans. ASME J. of Heat Transfer, 121 (1999), 438–445 | DOI