Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2002_5_1_a5, author = {V. M. Miklyukov}, title = {Stagnation {Zones} of {Solutions} to {the~Laplace--Beltrami} {Equation} in {Long} {Strips}}, journal = {Matemati\v{c}eskie trudy}, pages = {84--101}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a5/} }
V. M. Miklyukov. Stagnation Zones of Solutions to the~Laplace--Beltrami Equation in Long Strips. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 84-101. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a5/
[1] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965
[2] Oleinik O. A., Radkevich E. V., “Analitichnost i teoremy tipa Liuvillya i Fragmena — Lindelefa dlya obschikh ellipticheskikh sistem uravnenii”, Mat. sb., 95(137):1 (1974), 130–145 | MR | Zbl
[3] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987
[4] Alum N. R., White J., “A coupled numerical technique for self-consistent analysis of micro-electromechanical systems”, ASME J. Micro-Electromech. Syst. (MEMS), 59 (1996), 275–280
[5] Khrustalev D., Faghri A., “Coupled liquid and vapour flow in miniature passages with microgrooves”, Trans. ASME J. of Heat Transfer, 121:3 (1999), 729–733 | DOI
[6] Miklyukov V. M., Tkachev V. G., “Denjoy–Ahlfors theorem for harmonic functions on Riemannian manifolds and external structure of minimal surfaces”, Comm. Anal. Geom., 4:4 (1996), 547–587 | MR | Zbl
[7] Nie Y. Y., “Navier–Stokes analysis of gaseous slip flow in long grooves”, Numerical Heat Transfer / Part A, 36 (1999), 75–93 | DOI | MR
[8] Olejnik O. A., Iosif'yan G. A., “Boundary value problems for second order elliptic equations in unbounded domains and Saint-Venant's Principle”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1977, no. 2, 269–290 | MR | Zbl
[9] Peterson G. P., Ma H. B., “Temperature response of heat transport in a microheat pipe”, Trans. ASME J. of Heat Transfer, 121 (1999), 438–445 | DOI