On Asymptotics of the~Jump of~Highest Derivative for a~Polynomial Spline
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 66-73
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we obtain $2[n/2]+2$ terms ($[\boldsymbol{\cdot}]$ stands for the integer part) of the asymptotic expansion of the error
$$
\bigl(S^{(n)}({}\,\overline{\kern-.3mm x}_i+0)-S^{(n)}({}\,\overline{\kern-.3mm x}_i-0)\bigr)\big/h-f^{(n+1)}({}\,\overline{\kern-.3mm x}_i),
$$
where $S(x)$ is a periodic spline of degree $n\ge 0$ and deficiency 1 that interpolates a periodic sufficiently smooth function $f(x)$ at the nodes $x_i$ ($i=0,\pm1,\dots$) of a uniform mesh of width $h$. The nodes of the spline are the points ${}\,\overline{\kern-.3mm x}_i=x_i+h\bigl(1+(-1)^n\bigr)/4$.
The expansion coefficients are represented explicitly in terms of the values of the Bernoulli polynomials at 0 for $n$ odd and 1/2 for $n$ even.
@article{MT_2002_5_1_a3,
author = {B. S. Kindalev},
title = {On {Asymptotics} of {the~Jump} {of~Highest} {Derivative} for {a~Polynomial} {Spline}},
journal = {Matemati\v{c}eskie trudy},
pages = {66--73},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a3/}
}
B. S. Kindalev. On Asymptotics of the~Jump of~Highest Derivative for a~Polynomial Spline. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 66-73. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a3/