Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2002_5_1_a2, author = {A. I. Zhdanok}, title = {Finitely {Additive} {Measures} in {the~Ergodic} {Theory} of {Markov} {Chains.~II}}, journal = {Matemati\v{c}eskie trudy}, pages = {46--65}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a2/} }
A. I. Zhdanok. Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~II. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 46-65. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a2/
[1] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M., 1999
[2] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962 | MR
[3] Dub Dzh. L., Veroyatnostnye protsessy, Izd-vo inostr. lit., M., 1956
[4] Zhdanok A. I., “Invariantnye konechno additivnye mery i predelnoe povedenie markovskikh protsessov s diskretnym vremenem”, Dokl. AN USSR. Ser. A, 1981, no. 3, 11–13 | MR
[5] Zhdanok A. I., “Iteratsionnye protsessy kak tsepi Markova”, Latv. mat. ezhegodnik, 26, Zinatne, Riga, 1982, 153–164
[6] Zhdanok A. I., “Regulyarizatsiya konechno additivnykh mer”, Latv. mat. ezhegodnik, 28, Zinatne, Riga, 1983, 234–248
[7] Zhdanok A. I., “Konechno additivnye mery i metod rasshireniya v ergodicheskoi teorii”, Raspredelenie na funktsionalnykh strukturakh, Preprint 87.27, In-t matematiki AN USSR, Kiev, 1987, 19–37
[8] Zhdanok A. I., “Konechno-additivnye mery v ergodicheskoi teorii tsepei Markova. I”, Mat. trudy, 4:2 (2001), 53–95 | MR
[9] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, Uspekhi mat. nauk, 3:1(23) (1948), 3–95
[10] Le Kam L., “Skhodimost po raspredeleniyu sluchainykh protsessov”, Matematika, 4:3 (1960), 107–142
[11] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatnostei i ee primeneniya, 1:2 (1956), 177–238 | MR | Zbl
[12] Shur M. G., “Invariantnye mery dlya tsepei Markova i fellerovskie rasshireniya tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 26:3 (1981), 496–509 | MR | Zbl
[13] Chersi F., “Finitely additive invariant measures”, Boll. Un. Mat. Ital. A (5), XV:1 (1978), 176–179 | MR
[14] Foguel S. R., “Existence of invariant measures for Markov processes. II”, Proc. Amer. Math. Soc., 17:2 (1966), 387–389 | DOI | MR | Zbl
[15] Foguel S. R., “Positive operators on $C(X)$”, Proc. Amer. Math. Soc., 22:1 (1969), 295–297 | DOI | MR | Zbl
[16] Foguel S. R., “The ergodic theory of positive operators of continuous functions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27:1 (1973), 19–51 | MR | Zbl
[17] Horowitz S., “Transition probabilities and contaction of $L_\infty$”, Z. Wahrsch. Verw. Gebiete., 24:4 (1972), 263–274 | DOI | MR | Zbl
[18] Ramakrishnan S., “A finitely additive generalization of Birkhoff's ergodic theorem”, Proc. Amer. Math. Soc., 96:2 (1986), 299–305 | DOI | MR | Zbl
[19] Revuz D., Markov Chains, North-Holland Mathematical Library, 11, North-Holland Publishing Co., Amsterdam; New York, 1975 | MR | Zbl
[20] Yosida K., Kakutani S., “Operator-theoretical treatment of Markoff's process and mean ergodic theorem”, Ann. Math., 42:1 (1941), 188–228 | DOI | MR | Zbl
[21] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66 | DOI | MR | Zbl