Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~II
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 46-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a new approach to the study of general Markov chains (MC), i.e., homogeneous Markov processes with discrete time on an arbitrary phase space. In the first part of the article, we suggested an extension of the traditional space of countably additive measures to the space of finitely additive measures. Given an arbitrary phase space, we constructed its “gamma-compactification” to which we extended each Markov chain. We established an isomorphism between all finitely additive Markov chains on the initial space and Feller countably additive chains on its “gamma-compactification”. Using the above construction, in the second part, we prove weak and strong ergodic theorems that establish a substantial dependence of the asymptotic behavior of a Markov chain on the presence and properties of invariant finitely additive measures. The study in the article is carried out in the framework of functional operator approach.
@article{MT_2002_5_1_a2,
     author = {A. I. Zhdanok},
     title = {Finitely {Additive} {Measures} in {the~Ergodic} {Theory} of {Markov} {Chains.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {46--65},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a2/}
}
TY  - JOUR
AU  - A. I. Zhdanok
TI  - Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~II
JO  - Matematičeskie trudy
PY  - 2002
SP  - 46
EP  - 65
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a2/
LA  - ru
ID  - MT_2002_5_1_a2
ER  - 
%0 Journal Article
%A A. I. Zhdanok
%T Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~II
%J Matematičeskie trudy
%D 2002
%P 46-65
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_1_a2/
%G ru
%F MT_2002_5_1_a2
A. I. Zhdanok. Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~II. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 46-65. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a2/

[1] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M., 1999

[2] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962 | MR

[3] Dub Dzh. L., Veroyatnostnye protsessy, Izd-vo inostr. lit., M., 1956

[4] Zhdanok A. I., “Invariantnye konechno additivnye mery i predelnoe povedenie markovskikh protsessov s diskretnym vremenem”, Dokl. AN USSR. Ser. A, 1981, no. 3, 11–13 | MR

[5] Zhdanok A. I., “Iteratsionnye protsessy kak tsepi Markova”, Latv. mat. ezhegodnik, 26, Zinatne, Riga, 1982, 153–164

[6] Zhdanok A. I., “Regulyarizatsiya konechno additivnykh mer”, Latv. mat. ezhegodnik, 28, Zinatne, Riga, 1983, 234–248

[7] Zhdanok A. I., “Konechno additivnye mery i metod rasshireniya v ergodicheskoi teorii”, Raspredelenie na funktsionalnykh strukturakh, Preprint 87.27, In-t matematiki AN USSR, Kiev, 1987, 19–37

[8] Zhdanok A. I., “Konechno-additivnye mery v ergodicheskoi teorii tsepei Markova. I”, Mat. trudy, 4:2 (2001), 53–95 | MR

[9] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, Uspekhi mat. nauk, 3:1(23) (1948), 3–95

[10] Le Kam L., “Skhodimost po raspredeleniyu sluchainykh protsessov”, Matematika, 4:3 (1960), 107–142

[11] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatnostei i ee primeneniya, 1:2 (1956), 177–238 | MR | Zbl

[12] Shur M. G., “Invariantnye mery dlya tsepei Markova i fellerovskie rasshireniya tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 26:3 (1981), 496–509 | MR | Zbl

[13] Chersi F., “Finitely additive invariant measures”, Boll. Un. Mat. Ital. A (5), XV:1 (1978), 176–179 | MR

[14] Foguel S. R., “Existence of invariant measures for Markov processes. II”, Proc. Amer. Math. Soc., 17:2 (1966), 387–389 | DOI | MR | Zbl

[15] Foguel S. R., “Positive operators on $C(X)$”, Proc. Amer. Math. Soc., 22:1 (1969), 295–297 | DOI | MR | Zbl

[16] Foguel S. R., “The ergodic theory of positive operators of continuous functions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27:1 (1973), 19–51 | MR | Zbl

[17] Horowitz S., “Transition probabilities and contaction of $L_\infty$”, Z. Wahrsch. Verw. Gebiete., 24:4 (1972), 263–274 | DOI | MR | Zbl

[18] Ramakrishnan S., “A finitely additive generalization of Birkhoff's ergodic theorem”, Proc. Amer. Math. Soc., 96:2 (1986), 299–305 | DOI | MR | Zbl

[19] Revuz D., Markov Chains, North-Holland Mathematical Library, 11, North-Holland Publishing Co., Amsterdam; New York, 1975 | MR | Zbl

[20] Yosida K., Kakutani S., “Operator-theoretical treatment of Markoff's process and mean ergodic theorem”, Ann. Math., 42:1 (1941), 188–228 | DOI | MR | Zbl

[21] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66 | DOI | MR | Zbl