Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~II
Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 167-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes the behavior of solutions to two-dimensional Hamiltonian systems arising in the theory of small oscillations of a rotating ideal fluid. Representation is established for a class of exact solutions to the linearized Euler equations (the Poincaré–Sobolev system), with the help of which a mathematical model is constructed for the process of origination and development of vortex structures in a cylindric domain. The second part of the article deals with the peculiarities of fluid oscillations connected with the character of the energy spectrum of a solution. We show that in the case of a continuous spectrum the number of vortex structures increases unboundedly with time while their scale diminishes. Some examples are constructed of exact solutions to the complete Euler system possessing singular continuous energy spectrum.
@article{MT_2002_5_1_a10,
     author = {M. V. Fokin},
     title = {Hamiltonian {Systems} in {the~Theory} of {Small} {Oscillations} of {a~Rotating} {Ideal} {Fluid.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {167--204},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2002_5_1_a10/}
}
TY  - JOUR
AU  - M. V. Fokin
TI  - Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~II
JO  - Matematičeskie trudy
PY  - 2002
SP  - 167
EP  - 204
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2002_5_1_a10/
LA  - ru
ID  - MT_2002_5_1_a10
ER  - 
%0 Journal Article
%A M. V. Fokin
%T Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~II
%J Matematičeskie trudy
%D 2002
%P 167-204
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2002_5_1_a10/
%G ru
%F MT_2002_5_1_a10
M. V. Fokin. Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~II. Matematičeskie trudy, Tome 5 (2002) no. 1, pp. 167-204. http://geodesic.mathdoc.fr/item/MT_2002_5_1_a10/

[1] Aleksandrii R. A., “Ob odnoi zadache Soboleva dlya spetsialnykh uravnenii s chastnymi proizvodnymi”, Dokl. AN SSSR, 73:5 (1950), 631–634

[2] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] Akhromeeva T. S., Kurdyumov S. P., Malnnetskni G. G., Samarskii A. A., Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR | Zbl

[4] Rabov S. A., Sveshnikov A. R., Zadachi dinamiki stratifitsirovannykh zhidkostei, Nauka, M., 1986 | MR

[5] Grinspen X., Teoriya vraschayuschikhsya zhidkostei, Gidrometeoizdat, L., 1975

[6] Zaslavskii G. M., Sascheev R. Z., Usikov D. A., Chernikov A. A., Slabyi khaos i kvaziregulyarnye struktury, Nauka, M., 1990

[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[8] Lake P. D., Fillips R. S., Teoriya rasseyaniya, Mir, M., 1971 | MR

[9] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR

[10] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[11] Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984

[12] Moulden T., “Vvedenie v opisanie yavleniya turbulentnosti”, Turbulentnost: printsipy i primeneniya, Mir, M., 1980, 33–65

[13] Moulden T., Frost U., Garner A., “Yavlenie turbulentnogo dvizheniya zhidkosti”, Turbulentnost: printsipy i primeneniya, Mir, M., 1980, 9–32

[14] Moffat G., “Nekotorye napravleniya razvitiya teorii turbulentnosti”, Sovremennaya gidrodinamika: uspekhi i problemy, Mir, M., 1984, 49–76

[15] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[16] Palns Zh., Di Melu V., Geometricheskaya teoriya dinamicheskikh sistem, Mir, M., 1986 | MR

[17] Rid M., Saimon B., Metody matematicheskoi fiziki. T. 3: Teoriya rasseyaniya, Mir, M., 1982 | MR

[18] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, Ch. 1, Mir, M., 1982 | MR

[19] Skazka V. V., “Asimptotika pri $t\to\infty$ reshenii odnoi zadachi matematicheskoi fiziki”, Mat. sb., 126(168):1 (1985), 3–40 | MR | Zbl

[20] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl

[21] Seffmen F., “Dinamika zavikhrennosti”, Sovremennaya gidrodinamika: uspekhi i problemy, Mir, M., 1984, 77–90

[22] Fokin M. V., “Suschestvovanie singulyarnogo spektra i asimptotika reshenii zadachi Soboleva”, Vychislitelnye metody i modeli prikladnoi matematiki, Tr. In-ta matematiki SO RAN, 26, Izd-vo In-ta matematiki, Novosibirsk, 1994, 107–195 | MR

[23] Fokin M. V., “Gamiltonovy sistemy v teorii malykh kolebanii vraschayuscheisya idealnoi zhidkosti. I”, Mat. trudy, 4:2 (2001), 155–206 | MR | Zbl

[24] Madden F. N., Mullin T., “The spinup from rest of a fluid-filled torus”, J. Fluid Mech., 265 (1994), 217–244 | DOI | MR

[25] Oser N., “Experimentelle Untersuchung ueber harmonische Schwingungen in rotierenden Fluessigkeiten”, Z. Angew. Math. Mech., 38 (1958), 386–391 | DOI | Zbl

[26] Wood W. W., “An oscillatory disturbance of rigidly rotating fluid”, Proc. Roy. Soc. London, Ser. A, 293 (1966), 181–212 | DOI | Zbl