Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~I
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 155-206

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes the behavior of solutions to two-dimensional Hamiltonian systems arising in the theory of small oscillations of a rotating ideal fluid. Representation is established for a class of exact solutions to the linearized Euler equations (the Poincaré–Sobolev system), with the help of which a mathematical model is constructed for the process of origination and development of vortex structures in a cylindric domain. The first part of the article deals with the general properties of fluid oscillations and describes those connected with the presence of symmetry groups defined by the initial manifold of perturbations of the velocity field. In particular, we demonstrate that fluid motions are cellular-like and synchronous appearance or disappearance of vortex structures hold in every cell.
@article{MT_2001_4_2_a8,
     author = {M. V. Fokin},
     title = {Hamiltonian {Systems} in {the~Theory} of {Small} {Oscillations} of {a~Rotating} {Ideal} {Fluid.~I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {155--206},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a8/}
}
TY  - JOUR
AU  - M. V. Fokin
TI  - Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~I
JO  - Matematičeskie trudy
PY  - 2001
SP  - 155
EP  - 206
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a8/
LA  - ru
ID  - MT_2001_4_2_a8
ER  - 
%0 Journal Article
%A M. V. Fokin
%T Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~I
%J Matematičeskie trudy
%D 2001
%P 155-206
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a8/
%G ru
%F MT_2001_4_2_a8
M. V. Fokin. Hamiltonian Systems in the~Theory of Small Oscillations of a~Rotating Ideal Fluid.~I. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 155-206. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a8/