Elliptic Eigenvalue Problems Involving an~Indefinite Weight Function
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 138-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We study elliptic eigenvalue problems with indefinite weight function; i.e., the problems $Lu=\lambda g(x)u$ ($x\in G\subset\mathbb R^n$) and $B_ju\big|_{\Gamma}=0$ ($j=\overline{1,m}$), where $L$ is a selfadjoint (in $L_2(G)$) elliptic operator, $g(x)$ is a measurable function changing sign in $G$, and $\{B_j\}$ is a collection of boundary operators. Under consideration is the question on the unconditional basis property of eigenfunctions and associated functions of this problem in the space $L_2$ with weight $|g|$.
@article{MT_2001_4_2_a7,
     author = {S. G. Pyatkov},
     title = {Elliptic {Eigenvalue} {Problems} {Involving} {an~Indefinite} {Weight} {Function}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {138--154},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a7/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Elliptic Eigenvalue Problems Involving an~Indefinite Weight Function
JO  - Matematičeskie trudy
PY  - 2001
SP  - 138
EP  - 154
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a7/
LA  - ru
ID  - MT_2001_4_2_a7
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Elliptic Eigenvalue Problems Involving an~Indefinite Weight Function
%J Matematičeskie trudy
%D 2001
%P 138-154
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a7/
%G ru
%F MT_2001_4_2_a7
S. G. Pyatkov. Elliptic Eigenvalue Problems Involving an~Indefinite Weight Function. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 138-154. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a7/